×

Prescribed conditions at infinity for parabolic equations. (English) Zbl 1333.35085

In this paper, the authors study the existence and uniqueness of bounded solutions of the Cauchy problem \[ \rho\partial_{t}u=L[G(u)]\text{ in }\mathbb R ^{N}\times(0,T]=:S_{T},\quad u=u_0\text{ in }\mathbb R ^{N}\times\{0\},\tag{1} \] where \(L\) is a second-order elliptic operator, formally defined by \[ Lv:=\mathrm{div}\{A(x,t)\nabla v\}+\langle b(x,t),\nabla v\rangle. \] Concerning the density \(\rho=\rho(x,t)\), the initial condition \(u_0\), the function \(G\) and the elliptic operator \(L\), the following hypotheses are made:
(i)
\(\rho\in C_{x,t}^{0,1}(\mathbb R ^{N}\times[0,T])\), \(\rho>0\);
(ii)
\(G\in C^1(\mathbb R )\), \(G(0)=0\), \(G'(s)>0\) for any \(s\in \mathbb R \setminus\{0\}\) \(G'\) is decreasing in \((-\delta,0)\) and increasing in \((0,\delta)\) if \(G'(0)=0\) for some \(\delta>0\);
(iii)
\(u_0\in L^{\infty}(\mathbb R ^{N})\cap C(\mathbb R ^{N})\);
(iv)
\(A\equiv(a_{ij})=(a_{ji})\), \(a_{ij}\in C_{x,t}^{1,0}(\mathbb R ^{N}\times[0,T])\) \(i,j=1,\dots,N\); \(\langle A(x,t)\xi,\xi\rangle>0\) for any \((x,t)\in \mathbb R ^{N}\times[0,T]\), \(\xi\in \mathbb R ^{N}\setminus\{0\}\);
(v)
\(b\equiv (b_{i}),\, b_{i}\in C_{x,t}^{1,0}(\mathbb R ^{N}\times[0,T])\), \(i=1,\dots,N\).
The authors formulate the assumptions on the coefficients of (1) in the form of the existence of the supersolution \(V(x)\) to the equation \[ LV : =\mathrm{div}\{A(x,t)\nabla V(x)\}+\langle b(x,t),\nabla V(x)\rangle = -\rho(x,t),\quad x\in \mathbb R ^{N}\setminus B_R,\;t\in (0,T],\tag{2} \] for some \(R \geq 0\).
To prove the existence of the solution to problem (1) satisfying a Dirichlet condition at infinity (\(\lim_{| x| \to\infty}u(x,t)=a(t)\) uniformly for \(t\in [0,T]\)), the authors assume that a suitable supersolution \(V=V(x)\) of (2) exists. More precisely, there exists a function \(V(x)\), which a supersolution to (2) in \([\mathbb R ^{N}\setminus B_R]\times(0,T]\), for some \(R >0\), such that
(i)
\(V>0\) in \(\mathbb R ^{N}\setminus B_R\);
(ii)
\(\lim_{| x| \to\infty}V(x)=0\).

MSC:

35K15 Initial value problems for second-order parabolic equations
35K55 Nonlinear parabolic equations
Full Text: DOI

References:

[1] DOI: 10.1016/0362-546X(82)90072-4 · Zbl 0518.35050 · doi:10.1016/0362-546X(82)90072-4
[2] Borok V. M., Zap. Mech. Mat. Fak. Chark. Gos. Univ. im Gorkogo i Cark. Mat. Obzhestva 29 pp 5– (1963)
[3] DOI: 10.1007/BF02567660 · Zbl 0761.35027 · doi:10.1007/BF02567660
[4] DOI: 10.1512/iumj.1983.32.32008 · Zbl 0526.35042 · doi:10.1512/iumj.1983.32.32008
[5] DOI: 10.1016/0022-0396(86)90064-1 · Zbl 0606.35044 · doi:10.1016/0022-0396(86)90064-1
[6] DOI: 10.1016/0022-0396(90)90081-Y · Zbl 0707.35074 · doi:10.1016/0022-0396(90)90081-Y
[7] DOI: 10.1090/S0002-9939-1994-1169025-2 · doi:10.1090/S0002-9939-1994-1169025-2
[8] Grillo G., Ann. Inst. H. Poincaré Anal. Non Linéaire (2013)
[9] DOI: 10.1070/RM1962v017n03ABEH004115 · Zbl 0108.28401 · doi:10.1070/RM1962v017n03ABEH004115
[10] Kalashnikov A. S., Vestnik Moskov. Univ. Ser. VI, Mat. Mekh. 6 pp 17– (1963)
[11] DOI: 10.1090/S1061-0022-08-00996-5 · Zbl 1152.35413 · doi:10.1090/S1061-0022-08-00996-5
[12] DOI: 10.1002/cpa.3160340605 · Zbl 0458.35042 · doi:10.1002/cpa.3160340605
[13] Lunardi A., Studia Math. 128 pp 171– (1998)
[14] DOI: 10.1006/jdeq.1995.1167 · Zbl 0843.35036 · doi:10.1006/jdeq.1995.1167
[15] DOI: 10.3934/dcds.2011.30.891 · Zbl 1232.35011 · doi:10.3934/dcds.2011.30.891
[16] DOI: 10.1007/s00028-009-0018-6 · Zbl 1239.35078 · doi:10.1007/s00028-009-0018-6
[17] Punzo F., Asymptot. Anal. 79 pp 273– (2012)
[18] DOI: 10.3934/cpaa.2008.7.1275 · Zbl 1157.35412 · doi:10.3934/cpaa.2008.7.1275
[19] Punzo F., Commun. Pure Appl. Anal. 8 pp 493– (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.