×

Quantum gravitational signatures in next-generation gravitational wave detectors. (English) Zbl 1518.83029

Summary: A recent study established a correspondence between the Generalized Uncertainty Principle (GUP) and Modified theories of gravity, particularly Stelle gravity. We investigate the consequences of this correspondence for inflation and cosmological observables by evaluating the power spectrum of the scalar and tensor perturbations using two distinct methods. First, we employ PLANCK observations to determine the GUP parameter \(\gamma_0\). Then, we use the value of \(\gamma_0\) to investigate the implications of quantum gravity on the power spectrum of primordial gravitational waves and their possible detectability in the next-generation detectors, like Einstein Telescope and Cosmic explorer.

MSC:

83C45 Quantization of the gravitational field
83E05 Geometrodynamics and the holographic principle
81V22 Unified quantum theories
81S07 Uncertainty relations, also entropic
83C35 Gravitational waves
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
47A10 Spectrum, resolvent
35B20 Perturbations in context of PDEs
83B05 Observational and experimental questions in relativity and gravitational theory

References:

[1] Smoot, G. F., Structure in the COBE differential microwave radiometer first year maps, Astrophys. J. Lett., 396, L1-L5 (1992)
[2] de Bernardis, P., A flat Universe from high resolution maps of the cosmic microwave background radiation, Nature, 404, 955-959 (2000)
[3] Spergel, D. N., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Suppl. Ser., 148, 175-194 (2003)
[4] Ogburn, R. W., The BICEP2 CMB polarization experiment, (Holland, W. S.; Zmuidzinas, J., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, vol. 7741 (2010), SPIE), 415-425
[5] Aghanim, N., Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys., 641, A1 (2020)
[6] Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020)
[7] Ade, P. A.R., Improved constraints on primordial gravitational waves using Planck, WMAP, and BICEP/Keck observations through the 2018 observing season, Phys. Rev. Lett., 127, Article 151301 pp. (2021)
[8] Starobinsky, A. A., A new type of isotropic cosmological models without singularity, Phys. Lett. B, 91, 99-102 (1980) · Zbl 1371.83222
[9] Kodama, H.; Sasaki, M., Cosmological perturbation theory, Prog. Theor. Phys. Suppl., 78, 1-166 (1984)
[10] Mukhanov, V. F.; Feldman, H. A.; Brandenberger, R. H., Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rep., 215, 203-333 (1992)
[11] Lidsey, J. E.; Liddle, A. R.; Kolb, E. W.; Copeland, E. J.; Barreiro, T.; Abney, M., Reconstructing the inflation potential: an overview, Rev. Mod. Phys., 69, 373-410 (1997)
[12] Lyth, D. H.; Riotto, A., Particle physics models of inflation and the cosmological density perturbation, Phys. Rep., 314, 1-146 (1999)
[13] Bassett, B. A.; Tsujikawa, S.; Wands, D., Inflation dynamics and reheating, Rev. Mod. Phys., 78, 537-589 (2006)
[14] Grishchuk, L. P.; Sidorov, Y. V., Squeezed quantum states of relic gravitons and primordial density fluctuations, Phys. Rev. D, 42, 3413-3421 (1990)
[15] Sathyaprakash, B. S.; Schutz, B. F., Physics, astrophysics and cosmology with gravitational waves, Living Rev. Relativ., 12, 2 (2009) · Zbl 1166.85002
[16] Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S., Gravitational waves from inflation, Riv. Nuovo Cimento, 39, 399-495 (2016)
[17] Baumann, D., CMBPol mission concept study: probing inflation with CMB polarization, AIP Conf. Proc., 1141, 10-120 (2009)
[18] Crill, B. P., SPIDER: a balloon-borne large-scale CMB polarimeter, Proc. SPIE Int. Soc. Opt. Eng., 7010, Article 70102P pp. (2008)
[19] Eimer, J. R., The cosmology large angular scale surveyor (CLASS): 40 GHz optical design, (Holland, W. S.; Zmuidzinas, J., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8452 (2012)), 845220
[20] Ade, P. A.R., Joint analysis of BICEP2/Keck Array and Planck data, Phys. Rev. Lett., 114, Article 101301 pp. (2015)
[21] Ade, P. A.R., A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR, Astrophys. J.. Astrophys. J., Astrophys. J., 848, 73 (2017), Erratum:
[22] Gandilo, N. N., The primordial inflation polarization explorer (PIPER), (Holland, W. S.; Zmuidzinas, J., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9914 (2016)), 99141J
[23] Paoletti, D.; Finelli, F.; Valiviita, J.; Hazumi, M., Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future B-mode polarization measurements (2022)
[24] Crowder, J.; Cornish, N. J., Beyond LISA: exploring future gravitational wave missions, Phys. Rev. D, 72, Article 083005 pp. (2005)
[25] Hild, S., Sensitivity studies for third-generation gravitational wave observatories, Class. Quantum Gravity, 28, Article 094013 pp. (2011)
[26] Sato, S., The status of DECIGO, J. Phys. Conf. Ser., 840, Article 012010 pp. (2017)
[27] Amaro-Seoane, P., Laser interferometer space antenna (2017), arXiv e-prints
[28] Maggiore, M., Science case for the Einstein telescope, J. Cosmol. Astropart. Phys., 03, Article 050 pp. (2020)
[29] Evans, M., A Horizon Study for Cosmic Explorer: science, observatories, and community (2021)
[30] Srivastava, V.; Davis, D.; Kuns, K.; Landry, P.; Ballmer, S.; Evans, M.; Hall, E. D.; Read, J.; Sathyaprakash, B. S., Science-driven tunable design of Cosmic Explorer detectors, Astrophys. J., 931, 22 (2022)
[31] Garay, L. J., Quantum gravity and minimum length, Int. J. Mod. Phys. A, 10, 145-166 (1995)
[32] Hossenfelder, S., Minimal length scale scenarios for quantum gravity, Living Rev. Relativ., 16, 2 (2013) · Zbl 1320.83004
[33] Addazi, A., Quantum gravity phenomenology at the dawn of the multi-messenger era—a review, Prog. Part. Nucl. Phys., 125, Article 103948 pp. (2022)
[34] Adler, R. J.; Santiago, D. I., On gravity and the uncertainty principle, Mod. Phys. Lett. A, 14, 1371 (1999)
[35] Adler, R. J.; Chen, P.; Santiago, D. I., The generalized uncertainty principle and black hole remnants, Gen. Relativ. Gravit., 33, 2101-2108 (2001) · Zbl 1003.83020
[36] Ali, A. F.; Majumder, B., Towards a cosmology with minimal length and maximal energy, Class. Quantum Gravity, 31, Article 215007 pp. (2014) · Zbl 1304.83020
[37] Ali, A. F.; Faizal, M.; Khalil, M. M., Short distance physics of the inflationary de Sitter universe, J. Cosmol. Astropart. Phys., 2015, Article 025 pp. (2015)
[38] Alonso-Serrano, A.; Dabrowski, M. P.; Gohar, H., Generalized uncertainty principle impact onto the black holes information flux and the sparsity of Hawking radiation, Phys. Rev. D, 97 (2018)
[39] Amati, D.; Ciafaloni, M.; Veneziano, G., Can spacetime be probed below the string size?, Phys. Lett. B, 216, 41-47 (1989)
[40] Amelino-Camelia, G., Quantum-spacetime phenomenology, Living Rev. Relativ., 16, 5 (2013)
[41] Bargueño, P.; Vagenas, E. C., Semiclassical corrections to black hole entropy and the generalized uncertainty principle, Phys. Lett. B, 742, 15-18 (2015) · Zbl 1345.83017
[42] Bambi, C.; Urban, F. R., Natural extension of the generalised uncertainty principle, Class. Quantum Gravity, 25, Article 095006 pp. (2007) · Zbl 1140.83317
[43] Bawaj, M.; Biancofiore, C.; Bonaldi, M.; Bonfigli, F.; Borrielli, A.; Di Giuseppe, G.; Marconi, L.; Marino, F.; Natali, R.; Pontin, A., Probing deformed commutators with macroscopic harmonic oscillators, Nat. Commun., 6 (2015)
[44] Bojowald, M.; Kempf, A., Generalized uncertainty principles and localization of a particle in discrete space, Phys. Rev. D, 86, Article 085017 pp. (2011)
[45] Bolen, B.; Cavagliá, M., (Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle, Gen. Relativ. Gravit., 37, 1255-1262 (2005) · Zbl 1072.83012
[46] Bosso, P.; Das, S., Generalized uncertainty principle and angular momentum, Ann. Phys., 383, 416-438 (2017) · Zbl 1373.81408
[47] Bosso, P.; Das, S.; Mann, R. B., Potential tests of the Generalized Uncertainty Principle in the advanced LIGO experiment, Phys. Lett. B, 785, 498-505 (2018)
[48] Bosso, P., Rigorous Hamiltonian and Lagrangian analysis of classical and quantum theories with minimal length, Phys. Rev. D, 97, Article 126010 pp. (2018)
[49] Bosso, P.; Obregón, O., Minimal length effects on quantum cosmology and quantum black hole models, Class. Quantum Gravity, 37, Article 045003 pp. (2020) · Zbl 1478.83081
[50] Burger, D. J.; Moynihan, N.; Das, S.; Shajidul Haque, S.; Underwood, B., Towards the Raychaudhuri equation beyond general relativity, Phys. Rev. D, 98, Article 024006 pp. (2018)
[51] Bushev, P.; Bourhill, J.; Goryachev, M.; Kukharchyk, N.; Ivanov, E.; Galliou, S.; Tobar, M.; Danilishin, S., Testing the generalized uncertainty principle with macroscopic mechanical oscillators and pendulums, Phys. Rev. D, 100, Article 066020 pp. (2019)
[52] Casadio, R.; Scardigli, F., Generalized uncertainty principle, classical mechanics, and general relativity, Phys. Lett. B, 807, Article 135558 pp. (2020) · Zbl 1473.81089
[53] Chang, L. N.; Lewis, Z.; Minic, D.; Takeuchi, T., On the minimal length uncertainty relation and the foundations of string theory, Adv. High Energy Phys., 2011, Article 493514 pp. (2011) · Zbl 1234.81093
[54] Cortes, J. L.; Gamboa, J., Quantum uncertainty in doubly special relativity, Phys. Rev. D, 71, Article 065015 pp. (2005)
[55] Costa Filho, R. N.; Braga, J. P.M.; Lira, J. H.S.; Andrade, J. S., Extended uncertainty from first principles, Phys. Lett. B, 755, 367-370 (2016)
[56] Dabrowski, M. P.; Wagner, F., Asymptotic generalized extended uncertainty principle, Eur. Phys. J. C, 80, 676 (2020)
[57] Das, S.; Vagenas, E. C., Universality of quantum gravity corrections, Phys. Rev. Lett., 101, Article 221301 pp. (2008)
[58] Das, S.; Vagenas, E. C.; Ali, A. F., Discreteness of space from GUP II: relativistic wave equations, Phys. Lett. B. Phys. Lett. B, Phys. Lett. B, 692, 342-412 (2010), Erratum:
[59] Das, S.; Haque, S. S.; Underwood, B., Constraints and horizons for de Sitter with extra dimensions, Phys. Rev. D, 100 (2019)
[60] Das, A.; Das, S.; Vagenas, E. C., Discreteness of space from GUP in strong gravitational fields, Phys. Lett. B, 809, Article 135772 pp. (2020) · Zbl 1473.83023
[61] Garcia-Chung, A.; Mertens, J. B.; Rastgoo, S.; Tavakoli, Y.; Vargas Moniz, P., Propagation of quantum gravity-modified gravitational waves on a classical FLRW spacetime, Phys. Rev. D, 103, Article 084053 pp. (2021)
[62] Giddings, S. B., Black holes and other clues to the quantum structure of gravity, Galaxies, 9, 16 (2020)
[63] Hamil, B.; Merad, M.; Birkandan, T., Applications of the extended uncertainty principle in AdS and dS spaces, Eur. Phys. J. Plus, 134, 278 (2019)
[64] Hossenfelder, S., Interpretation of quantum field theories with a minimal length scale, Phys. Rev. D, 73, Article 105013 pp. (2006)
[65] Kempf, A.; Mangano, G.; Mann, R. B., Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D, Part. Fields, 52, 1108-1118 (1995)
[66] Kober, M., Gauge theories under incorporation of a generalized uncertainty principle, Phys. Rev. D, 82, Article 085017 pp. (2010)
[67] Konishi, K.; Paffuti, G.; Provero, P., Minimum physical length and the generalized uncertainty principle in string theory, Phys. Lett. B, 234, 276-284 (1990)
[68] Maggiore, M., A generalized uncertainty principle in quantum gravity, Phys. Lett. B, 304, 65-69 (1993)
[69] Marin, F., Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables, Nat. Phys., 9, 71-73 (2013)
[70] Moradpour, H.; Aghababaei, S.; Ziaie, A. H., A note on effects of generalized and extended uncertainty principles on Jüttner gas, Symmetry, 13, 213 (2021)
[71] Mureika, J. R., Extended uncertainty principle black holes, Phys. Lett. B, 789, 88-92 (2019)
[72] Myung, Y. S.; Kim, Y.-W.; Park, Y.-J., Black hole thermodynamics with generalized uncertainty principle, Phys. Lett. B, 645, 393-397 (2007) · Zbl 1273.83106
[73] Park, M.-I., The generalized uncertainty principle in (A)dS space and the modification of Hawking temperature from the minimal length, Phys. Lett. B, 659, 698-702 (2008) · Zbl 1246.83141
[74] Snyder, H. S., Quantized space-time, Phys. Rev., 71, 38-41 (1947) · Zbl 0035.13101
[75] Sprenger, M.; Nicolini, P.; Bleicher, M., Neutrino oscillations as a novel probe for a minimal length, Class. Quantum Gravity, 28, Article 235019 pp. (2011) · Zbl 1231.83016
[76] Jaffino Stargen, D.; Shankaranarayanan, S.; Das, S., Polymer quantization and advanced gravitational wave detector, Phys. Rev. D, 100, Article 086007 pp. (2019)
[77] Wang, B.; Long, C.; Long, Z.; Xu, T., Solutions of the Schrödinger equation under topological defects space-times and generalized uncertainty principle, Eur. Phys. J. Plus, 131, 378 (2016)
[78] Bosso, P.; Das, S.; Todorinov, V., Quantum field theory with the generalized uncertainty principle I: scalar electrodynamics, Ann. Phys., 422, Article 168319 pp. (2020) · Zbl 1448.81461
[79] Bosso, P.; Das, S.; Todorinov, V., Quantum field theory with the generalized uncertainty principle II: quantum electrodynamics, Ann. Phys., 424, Article 168350 pp. (2020) · Zbl 1453.81060
[80] Todorinov, V.; Bosso, P.; Das, S., Relativistic generalized uncertainty principle, Ann. Phys., 405, 92-100 (2018) · Zbl 1414.81266
[81] Nenmeli, V.; Shankaranarayanan, S.; Todorinov, V.; Das, S., Maximal momentum GUP leads to quadratic gravity, Phys. Lett. B, 821, Article 136621 pp. (2021) · Zbl 07414612
[82] Stelle, K. S., Classical gravity with higher derivatives, Gen. Relativ. Gravit., 9, 353-371 (1978)
[83] Stelle, K. S., Renormalization of higher-derivative quantum gravity, Phys. Rev. D, 16, 953-969 (1977)
[84] Noakes, D. R., The initial value formulation of higher derivative gravity, J. Math. Phys., 24, 1846-1850 (1983) · Zbl 0516.58023
[85] Chowdhury, A.; Xavier, S.; Shankaranarayanan, S., Massive tensor modes carry more energy than scalar modes in quadratic gravity (2022)
[86] Ade, P. A.R., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys., 594, A20 (2016)
[87] Das, S.; Fridman, M.; Lambiase, G.; Vagenas, E. C., Baryon asymmetry from the generalized uncertainty principle, Phys. Lett. B, 824, Article 136841 pp. (2022) · Zbl 1483.83018
[88] Das, A.; Das, S.; Mansour, N. R.; Vagenas, E. C., Bounds on GUP parameters from GW150914 and GW190521, Phys. Lett. B, 819, Article 136429 pp. (2021) · Zbl 07409724
[89] Bosso, P., On the quasi-position representation in theories with a minimal length, Class. Quantum Gravity, 38, Article 075021 pp. (2021) · Zbl 1481.83043
[90] Bosso, P.; Obregón, O.; Rastgoo, S.; Yupanqui, W., Deformed algebra and the effective dynamics of the interior of black holes, Class. Quantum Gravity, 38, Article 145006 pp. (2021) · Zbl 1482.83075
[91] Hawking, S. W.; Ellis, G. F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (1973), Cambridge University Press · Zbl 0265.53054
[92] Wald, R. M., General Relativity (1984), Chicago Univ. Press: Chicago Univ. Press Chicago, USA · Zbl 0549.53001
[93] Lovelock, D., The Einstein tensor and its generalizations, J. Math. Phys., 12, 498-501 (1971) · Zbl 0213.48801
[94] Sotiriou, T. P.; Faraoni, V., \(f(R)\) theories of gravity, Rev. Mod. Phys., 82, 451-497 (2010) · Zbl 1205.83006
[95] Anselmi, D.; Bianchi, E.; Piva, M., Predictions of quantum gravity in inflationary cosmology: effects of the Weyl-squared term, J. High Energy Phys., 07, Article 211 pp. (2020) · Zbl 1451.83112
[96] Deruelle, N.; Sasaki, M.; Sendouda, Y.; Youssef, A., Inflation with a Weyl term, or ghosts at work, J. Cosmol. Astropart. Phys., 03, Article 040 pp. (2011)
[97] Deruelle, N.; Sasaki, M.; Sendouda, Y.; Youssef, A., Lorentz-violating vs ghost gravitons: the example of Weyl gravity, J. High Energy Phys., 09, Article 009 pp. (2012) · Zbl 1397.83020
[98] Anselmi, D., On the quantum field theory of the gravitational interactions, J. High Energy Phys., 06, Article 086 pp. (2017) · Zbl 1380.83087
[99] Sasaki, M.; Tagoshi, H., Analytic black hole perturbation approach to gravitational radiation, Living Rev. Relativ., 6, 6 (2003) · Zbl 1070.83019
[100] Bonga, B.; Gupt, B., Phenomenological investigation of a quantum gravity extension of inflation with the Starobinsky potential, Phys. Rev. D, 93, Article 063513 pp. (2016)
[101] Barack, L., Black holes, gravitational waves and fundamental physics: a roadmap, Class. Quantum Gravity, 36, Article 143001 pp. (2019)
[102] Oikonomou, V. K., \(f(R)\)-gravity generated post-inflationary eras and their effect on primordial gravitational waves (2022) · Zbl 07769735
[103] Odintsov, S. D.; Oikonomou, V. K.; Myrzakulov, R., Spectrum of primordial gravitational waves in modified gravities: a short overview, Symmetry, 14, 729 (2022)
[104] Shankaranarayanan, S.; Sriramkumar, L., Trans-Planckian corrections to the primordial spectrum in the infrared and the ultraviolet, Phys. Rev. D, 70, Article 123520 pp. (2004)
[105] Sriramkumar, L.; Shankaranarayanan, S., Path integral duality and Planck scale corrections to the primordial spectrum in exponential inflation, J. High Energy Phys., 12, Article 050 pp. (2006) · Zbl 1226.83095
[106] Turner, M. S., Detectability of inflation produced gravitational waves, Phys. Rev. D, 55, R435-R439 (1997)
[107] Smith, T. L.; Kamionkowski, M.; Cooray, A., Direct detection of the inflationary gravitational wave background, Phys. Rev. D, 73, Article 023504 pp. (2006)
[108] Moore, C. J.; Cole, R. H.; Berry, C. P.L., Gravitational-wave sensitivity curves, Class. Quantum Gravity, 32, Article 015014 pp. (2015)
[109] Aggarwal, N., Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies, Living Rev. Relativ., 24, 4 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.