×

On the quasi-position representation in theories with a minimal length. (English) Zbl 1481.83043

Summary: Quantum mechanical models with a minimal length are often described by modifying the commutation relation between position and momentum. Although this represents a small complication when described in momentum space, at least formally, the (quasi-)position representation acquires numerous issues, source of misunderstandings. In this work, we review these issues, clarifying some of the aspects of minimal length models, with particular reference to the representation of the position operator.

MSC:

83C45 Quantization of the gravitational field
93C65 Discrete event control/observation systems
81S07 Uncertainty relations, also entropic
81R60 Noncommutative geometry in quantum theory

References:

[1] Garay, L. J., Quantum gravity and minimum length, Int. J. Mod. Phys. A, 10, 145-165 (1994) · doi:10.1142/s0217751x95000085
[2] Amelino-Camelia, G., Quantum-spacetime phenomenology, Living Rev. Relativ., 16, 5 (2013) · doi:10.12942/lrr-2013-5
[3] Amati, D.; Ciafaloni, M.; Veneziano, G., Can spacetime be probed below the string size?, Phys. Lett. B, 216, 41-47 (1989) · doi:10.1016/0370-2693(89)91366-x
[4] Gross, D. J.; Mende, P. F., String theory beyond the Planck scale, Nucl. Phys. B, 303, 407-454 (1988) · doi:10.1016/0550-3213(88)90390-2
[5] Rovelli, C.; Smolin, L., Discreteness of area and volume in quantum gravity, Nucl. Phys. B, 442, 593-619 (1994) · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-q
[6] Mead, C. A., Possible connection between gravitation and fundamental length, Phys. Rev., 135, B849-B862 (1964) · Zbl 0126.24201 · doi:10.1103/physrev.135.b849
[7] Maggiore, M., A generalized uncertainty principle in quantum gravity, Phys. Lett. B, 304, 65-69 (1993) · doi:10.1016/0370-2693(93)91401-8
[8] Scardigli, F., Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment, Phys. Lett. B, 452, 39-44 (1999) · doi:10.1016/s0370-2693(99)00167-7
[9] Scardigli, F.; Casadio, R., Gravitational tests of the generalized uncertainty principle, Eur. Phys. J. C, 75, 425 (2015) · doi:10.1140/epjc/s10052-015-3635-y
[10] Casadio, R.; Scardigli, F., Generalized uncertainty principle, classical mechanics, and general relativity, Phys. Lett. B, 807 (2020) · Zbl 1473.81089 · doi:10.1016/j.physletb.2020.135558
[11] Mignemi, S., Classical and quantum mechanics of the nonrelativistic Snyder model in curved space, Class. Quantum Grav., 29 (2012) · Zbl 1266.83093 · doi:10.1088/0264-9381/29/21/215019
[12] Pramanik, S.; Ghosh, S., Gup-based and Snyder noncommutative algebras, relativistic particle models, deformed Symmetries and interaction: a unified approach, Int. J. Mod. Phys. A, 28, 1350131 (2013) · Zbl 1277.83067 · doi:10.1142/s0217751x13501315
[13] Pramanik, S.; Ghosh, S.; Pal, P., Conformal invariance in noncommutative geometry and mutually interacting Snyder particles, Phys. Rev. D, 90 (2014) · doi:10.1103/physrevd.90.105027
[14] Chashchina, O. I.; Sen, A.; Silagadze, Z. K., On deformations of classical mechanics due to Planck-scale physics, Int. J. Mod. Phys. D, 29, 2050070 (2020) · Zbl 1443.81003 · doi:10.1142/s0218271820500704
[15] Bosso, P., Rigorous Hamiltonian and Lagrangian analysis of classical and quantum theories with minimal length, Phys. Rev. D, 97 (2018) · doi:10.1103/physrevd.97.126010
[16] Maggiore, M., The algebraic structure of the generalized uncertainty principle, Phys. Lett. B, 319, 83-86 (1993) · doi:10.1016/0370-2693(93)90785-g
[17] Kempf, A.; Mangano, G.; Mann, R. B., Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D, 52, 1108-1118 (1995) · doi:10.1103/physrevd.52.1108
[18] Ali, A. F.; Das, S.; Vagenas, E. C., Proposal for testing quantum gravity in the lab, Phys. Rev. D, 84 (2011) · doi:10.1103/physrevd.84.044013
[19] Bosso, P., Generalized uncertainty principle and quantum gravity phenomenology, PhD Thesis (2017)
[20] Bishop, M.; Lee, J.; Singleton, D., Modified commutators are not sufficient to determine a quantum gravity minimal length scale, Phys. Lett. B, 802 (2020) · Zbl 1435.81104 · doi:10.1016/j.physletb.2020.135209
[21] Hossenfelder, S.; Bleicher, M.; Hofmann, S.; Ruppert, J.; Scherer, S.; Stöcker, H., Signatures in the Planck regime, Phys. Lett. B, 575, 85-99 (2003) · Zbl 1029.83501 · doi:10.1016/j.physletb.2003.09.040
[22] Jizba, P.; Kleinert, H.; Scardigli, F., Uncertainty relation on world crystal and its applications to micro black holes, Phys. Rev. D, 81 (2010) · doi:10.1103/physrevd.81.084030
[23] Ong, Y. C., Generalized uncertainty principle, black holes, and white dwarfs: a tale of two infinities, J. Cosmol. Astropart. Phys. (2018) · Zbl 1527.83060 · doi:10.1088/1475-7516/2018/09/015
[24] Buoninfante, L.; Luciano, G. G.; Petruzziello, L., Generalized uncertainty principle and corpuscular gravity, Eur. Phys. J. C, 79, 663 (2019) · doi:10.1140/epjc/s10052-019-7164-y
[25] Bosso, P.; Obregón, O.; Rastgoo, S.; Yupanqui, W., Deformed algebra and the effective dynamics of the interior of black holes (2020)
[26] Blasone, M.; Lambiase, G.; Luciano, G. G.; Petruzziello, L.; Scardigli, F., Heuristic derivation of Casimir effect in minimal length theories, Int. J. Mod. Phys. D, 29, 2050011 (2020) · doi:10.1142/s021827182050011x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.