×

Predictions of quantum gravity in inflationary cosmology: effects of the Weyl-squared term. (English) Zbl 1451.83112

Summary: We derive the predictions of quantum gravity with fakeons on the amplitudes and spectral indices of the scalar and tensor fluctuations in inflationary cosmology. The action is \(R +R^2\) plus the Weyl-squared term. The ghost is eliminated by turning it into a fakeon, that is to say a purely virtual particle. We work to the next-to-leading order of the expansion around the de Sitter background. The consistency of the approach puts a lower bound \((m_\chi > m_\varphi /4)\) on the mass \(m_\chi\) of the fakeon with respect to the mass \(m_\varphi\) of the inflaton. The tensor-to-scalar ratio \(r\) is predicted within less than an order of magnitude \((4/2 < N^2r <12\) to the leading order in the number of \(e\)-foldings \(N)\). Moreover, the relation \(r \simeq -8n_T\) is not affected by the Weyl-squared term. No vector and no other scalar/tensor degrees of freedom are present.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
83C45 Quantization of the gravitational field
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
53Z05 Applications of differential geometry to physics

References:

[1] Brout, R.; Englert, F.; Gunzig, E., The creation of the universe as a quantum phenomenon, Annals Phys., 115, 78 (1978) · doi:10.1016/0003-4916(78)90176-8
[2] Starobinsky, AA, A new type of isotropic cosmological models without singularity, Adv. Ser. Astrophys. Cosmol., 3, 130 (1987)
[3] Kazanas, D., Dynamics of the universe and spontaneous symmetry breaking, Astrophys. J. Lett., 241, L59 (1980) · doi:10.1086/183361
[4] Sato, K., First order phase transition of a vacuum and expansion of the universe, Mon. Not. Roy. Astron. Soc., 195, 467 (1981) · doi:10.1093/mnras/195.3.467
[5] Guth, AH, The inflationary universe: a possible solution to the horizon and flatness problems, Adv. Ser. Astrophys. Cosmol., 3, 139 (1987)
[6] Linde, AD, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Adv. Ser. Astrophys. Cosmol., 3, 149 (1987)
[7] Albrecht, A.; Steinhardt, PJ, Cosmology for grand unified theories with radiatively induced symmetry breaking, Adv. Ser. Astrophys. Cosmol., 3, 158 (1987)
[8] Linde, AD, Chaotic inflation, Phys. Lett. B, 129, 177 (1983) · doi:10.1016/0370-2693(83)90837-7
[9] V.F. Mukhanov and G.V. Chibisov, Quantum fluctuations and a nonsingular universe, JETP Lett.33 (1981) 532 [Pisma Zh. Eksp. Teor. Fi z.33 (1981) 549] [INSPIRE].
[10] V.F. Mukhanov and G.V. Chibisov, The vacuum energy and large scale structure of the universe, Sov. Phys. JETP56 (1982) 258 [Zh. Eksp. Teor. Fi z. 83 (1982) 475] [INSPIRE].
[11] Hawking, SW, The development of irregularities in a single bubble inflationary universe, Phys. Lett. B, 115, 295 (1982) · doi:10.1016/0370-2693(82)90373-2
[12] Guth, AH; Pi, SY, Fluctuations in the new inflationary universe, Phys. Rev. Lett., 49, 1110 (1982) · doi:10.1103/PhysRevLett.49.1110
[13] Starobinsky, AA, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett. B, 117, 175 (1982) · doi:10.1016/0370-2693(82)90541-X
[14] Bardeen, JM; Steinhardt, PJ; Turner, MS, Spontaneous creation of almost scale-free density perturbations in an inflationary universe, Phys. Rev. D, 28, 679 (1983) · doi:10.1103/PhysRevD.28.679
[15] V.F. Mukhanov, Gravitational instability of the universe filled with a scalar field, JETP Lett.41 (1985) 493 [Pisma Zh. Eksp. Teor. Fiz.41 (1985) 402] [INSPIRE].
[16] Weinberg, S., Cosmology (2008), Oxford, U.K: Oxford University Press, Oxford, U.K · Zbl 1147.83002
[17] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept.215 (1992) 203 [INSPIRE].
[18] D. Baumann, Inflation, in Theoretical Advanced Study Institute in elementary particle physics: physics of the large and the small, World Scientific, Singapore (2011), pg. 523 [arXiv:0907.5424] [INSPIRE]. · Zbl 1241.83003
[19] A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel.13 (2010) 3 [arXiv:1002.4928] [INSPIRE]. · Zbl 1215.83005
[20] T.P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys.82 (2010) 451 [arXiv:0805.1726] [INSPIRE]. · Zbl 1205.83006
[21] Martin, J.; Ringeval, C.; Vennin, V., Encyclopœdia inflationaris, Phys. Dark Univ., 5-6, 75 (2014) · doi:10.1016/j.dark.2014.01.003
[22] Martin, J.; Ringeval, C.; Trotta, R.; Vennin, V., The best inflationary models after Planck, JCAP, 03, 039 (2014)
[23] Planck collaboration, Planck 2018 results. X. Constraints on inflation,arXiv:1807.06211 [INSPIRE].
[24] Weinberg, S., Effective field theory for inflation, Phys. Rev. D, 77, 123541 (2008) · doi:10.1103/PhysRevD.77.123541
[25] Hawking, SW; Hertog, T., Living with ghosts, Phys. Rev. D, 65, 103515 (2002) · doi:10.1103/PhysRevD.65.103515
[26] Anselmi, D., On the quantum field theory of the gravitational interactions, JHEP, 06, 086 (2017) · Zbl 1380.83087 · doi:10.1007/JHEP06(2017)086
[27] Anselmi, D., Fakeons and Lee-Wick models, JHEP, 02, 141 (2018) · Zbl 1387.83019 · doi:10.1007/JHEP02(2018)141
[28] Anselmi, D., The quest for purely virtual quanta: fakeons versus Feynman- Wheeler particles, JHEP, 03, 142 (2020) · doi:10.1007/JHEP03(2020)142
[29] Anselmi, D.; Piva, M., The ultraviolet behavior of quantum gravity, JHEP, 05, 027 (2018) · Zbl 1391.83041 · doi:10.1007/JHEP05(2018)027
[30] Anselmi, D.; Piva, M., Quantum gravity, fakeons and microcausality, JHEP, 11, 021 (2018) · Zbl 1404.83025 · doi:10.1007/JHEP11(2018)021
[31] Weinberg, S., Quantum contributions to cosmological correlations, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.043514
[32] Anselmi, D., Fakeons, microcausality and the classical limit of quantum gravity, Class. Quant. Grav., 36 (2019) · Zbl 1476.83039 · doi:10.1088/1361-6382/ab04c8
[33] Clunan, T.; Sasaki, M., Tensor ghosts in the inflationary cosmology, Class. Quant. Grav., 27, 165014 (2010) · Zbl 1197.83114 · doi:10.1088/0264-9381/27/16/165014
[34] Deruelle, N.; Sasaki, M.; Sendouda, Y.; Youssef, A., Inflation with a Weyl term, or ghosts at work, JCAP, 03, 040 (2011) · doi:10.1088/1475-7516/2011/03/040
[35] Deruelle, N.; Sasaki, M.; Sendouda, Y.; Youssef, A., Lorentz-violating vs ghost gravitons: the example of Weyl gravity, JHEP, 09, 009 (2012) · Zbl 1397.83020 · doi:10.1007/JHEP09(2012)009
[36] Myung, YS; Moon, T., Primordial massive gravitational waves from Einstein-Chern-Simons-Weyl gravity, JCAP, 08, 061 (2014) · doi:10.1088/1475-7516/2014/08/061
[37] Kannike, K., Dynamically induced Planck scale and inflation, JHEP, 05, 065 (2015) · doi:10.1007/JHEP05(2015)065
[38] Ivanov, MM; Tokareva, AA, Cosmology with a light ghost, JCAP, 12, 018 (2016) · doi:10.1088/1475-7516/2016/12/018
[39] Salvio, A., Inflationary perturbations in no-scale theories, Eur. Phys. J. C, 77, 267 (2017) · doi:10.1140/epjc/s10052-017-4825-6
[40] Koshelev, AS; Modesto, L.; Rachwal, L.; Starobinsky, AA, Occurrence of exact R^2inflation in non-local UV-complete gravity, JHEP, 11, 067 (2016) · Zbl 1390.83464 · doi:10.1007/JHEP11(2016)067
[41] Koshelev, AS; Sravan Kumar, K.; Starobinsky, AA, R^2inflation to probe non-perturbative quantum gravity, JHEP, 03, 071 (2018) · Zbl 1388.83595 · doi:10.1007/JHEP03(2018)071
[42] Koshelev, AS; Sravan Kumar, K.; Mazumdar, A.; Starobinsky, AA, Non-Gaussianities and tensor-to-scalar ratio in non-local R^2-like inflation, JHEP, 06, 152 (2020) · Zbl 1437.83166 · doi:10.1007/JHEP06(2020)152
[43] Vilenkin, A., Classical and quantum cosmology of the Starobinsky inflationary model, Phys. Rev. D, 32, 2511 (1985) · doi:10.1103/PhysRevD.32.2511
[44] Stelle, KS, Renormalization of higher derivative quantum gravity, Phys. Rev. D, 16, 953 (1977) · doi:10.1103/PhysRevD.16.953
[45] Anselmi, D., Fakeons and the classicization of quantum gravity: the FLRW metric, JHEP, 04, 061 (2019) · Zbl 1415.83005 · doi:10.1007/JHEP04(2019)061
[46] Peters, P.; Uzan, JP, Primordial cosmology (2009), Oxford, U.K: Oxford University Press, Oxford, U.K
[47] CMB-S4 collaboration, CMB-S4 science book, first edition,arXiv:1610.02743 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.