×

Matrix-based method for the analysis and control of networked evolutionary games: a survey. (English) Zbl 07865425

MSC:

91A43 Games involving graphs
91A22 Evolutionary games
Full Text: DOI

References:

[1] Smith, J.M.; Price, G.R.; The logic of animal conflict; Nature: 1973; Volume 246 ,15-18. · Zbl 1369.92134
[2] Hamilton, W.D.; The genetical evolution of social behaviour. I; J. Theor. Biol.: 1964; Volume 7 ,1-16.
[3] Fisher, R.; ; The Genetic Theory of Natural Selection: Oxford, UK 1930; . · JFM 56.1106.13
[4] Trivers, R.; The evolution of reciprocal altruism; Q. Rev. Biol.: 1971; Volume 46 ,35-57.
[5] Jiang, C.; Chen, Y.; Gao, Y.; Liu, K.J.R.; Joint spectrum sensing and access evolutionary game in cognitive radio networks; IEEE Trans. Wirel. Commun.: 2013; Volume 12 ,2470-2483.
[6] Liu, W.; Wang, X.; Dynamic decision model in evolutionary games based on reinforcement learning; Syst. Eng.-Theory Pract.: 2009; Volume 29 ,28-33.
[7] Ohtsuki, H.; Hauert, C.; Lieberman, E.; Nowak, M.A.; A simple rule for the evolution of cooperation on graphs and social networks; Nature: 2006; Volume 441 ,502-505.
[8] Zhang, Z.; Zhang, H.; A variable-population evolutionary game model for resource allocation in cooperative cognitive relay networks; IEEE Commun. Lett.: 2013; Volume 17 ,361-364.
[9] Hofbauer, J.; Sigmund, K.; ; Evolutionary Games and Population Dynamics: Cambridge, UK 1988; .
[10] Taylor, P.; Jonker, L.; Evolutionary stable strategies and game dynamics; Math. Biosci.: 1978; Volume 40 ,145-156. · Zbl 0395.90118
[11] Suzuki, S.; Akiyama, E.; Evolutionary stability of first-order information indirect reciprocity in sizable groups; Theor. Popul. Biol.: 2008; Volume 73 ,426-436. · Zbl 1210.92031
[12] Jiang, C.; Chen, Y.; Liu, K.J.R.; On the equivalence of evolutionary stable strategies; IEEE Commun. Lett.: 2014; Volume 18 ,995-998.
[13] Lin, Z.; An algorithm of evolutionarily stable strategies for the single-population evolutionary game; J. Comput. Appl. Math.: 2008; Volume 217 ,157-165. · Zbl 1166.91007
[14] Wettergren, T.A.; Replicator dynamics of an N-player snowdrift game with delayed payoffs; Appl. Math. Comput.: 2021; Volume 404 ,126204. · Zbl 1510.91041
[15] Weibull, W.J.; ; Evolutionary Game Theory: Cambridge, MA, USA 1995; . · Zbl 0879.90206
[16] Madeo, D.; Mocenni, C.; Game interactions and dynamics on networked populations; IEEE Trans. Autom. Control: 2015; Volume 60 ,1801-1810. · Zbl 1360.91035
[17] Szabo, G.; Fath, G.; Evolutionary games on graphs; Phys. Rep.: 2007; Volume 446 ,97-216.
[18] Nowak, M.A.; May, R.M.; Evolutionary games and spatial chaos; Nature: 1992; Volume 359 ,826-829.
[19] Hauert, C.; Doebeli, M.; Spatial structure often inhibits the evolution of cooperation in the snowdrift game; Nature: 2004; Volume 428 ,643-646.
[20] Huang, F.; Chen, X.; Wang, L.; Evolutionary dynamics of networked multi-person games: Mixing opponent-aware and opponent-independent strategy decisions; New J. Phys.: 2019; Volume 21 ,063013.
[21] Santos, F.C.; Santos, M.D.; Pacheco, J.M.; Social diversity promotes the emergence of cooperation in public goods games; Nature: 2008; Volume 454 ,213-216.
[22] Szabo, G.; Toke, C.; Evolutionary prisoner’s dilemma game on a square lattice; Phys. Rev. E: 1998; Volume 58 ,69.
[23] Wang, W.; Ren, J.; Chen, G.; Wang, B.; Memory-based snowdrift game on networks; Phys. Rev. E: 2006; Volume 74 ,056113.
[24] Buesser, P.; Pena, J.; Pestelacci, E.; Tomassini, M.; The influence of tie strength on evolutionary games on networks: An empirical investigation; Phys. A Stat. Mech. Its Appl.: 2011; Volume 390 ,4502-4513.
[25] Wang, L.; Feng, F.; Chen, X.; Wang, J.; Zheng, L.; Xie, G.; Chu, T.; Evolutionary games on complex networks; CAAI Trans. Intell. Syst.: 2007; Volume 2 ,1-9.
[26] Cheng, D.; Qi, H.; Li, Z.; ; Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach: London, UK 2011; . · Zbl 1209.93001
[27] Lu, J.; Li, M.; Liu, Y.; Ho, D.W.C.; Kurths, J.; Nonsingularity of Grain-like cascade FSRs via semi-tensor product; Sci. China Inf. Sci.: 2018; Volume 61 ,010204.
[28] Fornasini, E.; Valcher, M.E.; On the periodic trajectories of Boolean control networks; Automatica: 2013; Volume 49 ,1506-1509. · Zbl 1319.93010
[29] Huang, C.; Wang, W.; Lu, J.; Kurths, J.; Asymptotic stability of Boolean networks with multiple missing data; IEEE Trans. Autom. Control: 2021; Volume 66 ,6093-6099. · Zbl 1536.93688
[30] Guo, Y.; Wang, P.; Gui, W.; Yang, C.; Set stability and set stabilization of Boolean control networks based on invariant subsets; Automatica: 2015; Volume 61 ,106-112. · Zbl 1327.93347
[31] Li, F.; Sun, J.; Stability and stabilization of multivalued logical networks; Nonlinear Anal. Real World Appl.: 2011; Volume 12 ,3701-3712. · Zbl 1231.94083
[32] Li, F.; Pinning control sesign for the stabilization of Boolean networks; IEEE Trans. Neural Netw. Learn. Syst.: 2016; Volume 27 ,1585-1590.
[33] Li, F.; Tang, Y.; Set stabilization for switched Boolean control networks; Automatica: 2017; Volume 78 ,223-230. · Zbl 1357.93079
[34] Li, H.; Wang, Y.; Liu, Z.; Simultaneous stabilization for a set of Boolean control networks; Syst. Control Lett.: 2013; Volume 62 ,1168-1174. · Zbl 1282.93126
[35] Lu, J.; Sun, L.; Liu, Y.; Ho, D.W.C.; Cao, J.; Stabilization of Boolean control networks under aperiodic sampled-data control; SIAM J. Control Optim.: 2018; Volume 56 ,4385-4404. · Zbl 1403.93124
[36] Lu, J.; Zhong, J.; Huang, C.; Cao, J.; On pinning controllability of Boolean control networks; IEEE Trans. Autom. Control: 2016; Volume 61 ,1658-1663. · Zbl 1359.93057
[37] Zhong, J.; Liu, Y.; Kou, K.; Sun, L.; Cao, J.; On the ensemble controllability of Boolean control networks using STP method; Appl. Math. Comput.: 2019; Volume 358 ,51-62. · Zbl 1428.93021
[38] Gao, S.; Sun, C.; Xiang, C.; Qin, K.; Lee, T.; Finite-horizon optimal control of Boolean control networks: A unified graph-theoretical approach; IEEE Trans. Neural Netw. Learn. Syst.: 2022; Volume 33 ,157-171.
[39] Zhao, Y.; Li, Z.; Cheng, D.; Optimal control of logical control networks; IEEE Trans. Autom. Control: 2011; Volume 56 ,1766-1776. · Zbl 1368.93396
[40] Gao, S.; Sun, C.; Xiang, C.; Qin, K.; Infinite-horizon optimal control of switched Boolean control networks with average cost: An efficient graph-theoretical approach; IEEE Trans. Cybern.: 2022; Volume 52 ,2314-2328.
[41] Zhu, Q.; Liu, Y.; Lu, J.; Cao, J.; Observability of Boolean control networks; Sci. China Inf. Sci.: 2018; Volume 61 ,092201.
[42] Liu, Y.; Zheng, Y.; Li, H.; Alsaadi, F.E.; Alsaadi, B.; Control design for output tracking of delayed Boolean control networks; J. Comput. Appl. Math.: 2018; Volume 327 ,188-195. · Zbl 1369.93288
[43] Mu, T.; Feng, J.; Li, Y.; Controllability and reachability of k-valued logical control networks with time delays in states; Proceedings of the 40th Chinese Control Conference: ; ,338-344.
[44] Zheng, Y.; Li, H.; Ding, X.; Liu, Y.; Stabilization and set. stabilization of delayed Boolean control networks based on trajectory stabilization; J. Frankl. Inst.: 2017; Volume 354 ,7812-7827. · Zbl 1380.93205
[45] Li, R.; Yang, M.; Chu, T.; State feedback stabilization for probabilistic Boolean networks; Automatica: 2014; Volume 50 ,1272-1278. · Zbl 1298.93275
[46] Liu, Y.; Chen, H.; Lu, J.; Wu, B.; Controllability of probabilistic Boolean control networks based on transition probability matrices; Automatica: 2015; Volume 52 ,340-345. · Zbl 1309.93026
[47] Li, H.; Wang, Y.; On reachability and controllability of switched Boolean control networks; Automatica: 2012; Volume 48 ,2917-2922. · Zbl 1252.93018
[48] Li, H.; Wang, S.; Li, X.; Zhao, G.; Perturbation analysis for controllability of logical control networks; SIAM J. Control Optim.: 2020; Volume 58 ,3632-3657. · Zbl 1454.93027
[49] Li, H.; Yang, X.; Wang, S.; Perturbation analysis for finite-time stability and stabilization of probabilistic Boolean networks; IEEE Trans. Cybern.: 2021; Volume 51 ,4623-4633.
[50] Wu, J.; Liu, Y.; Ruan, Q.; Lou, J.; Robust stability of switched Boolean networks with function perturbation; Nonlinear Anal. Hybrid Syst.: 2022; Volume 46 ,101216. · Zbl 1500.92037
[51] Yang, X.; Li, H.; Reachability, controllability and stabilization of Boolean control networks with stochastic function perturbations; IEEE Trans. Syst. Man, Cybern. Syst.: 2022; Volume 53 ,1198-1208.
[52] Cheng, D.; He, F.; Qi, H.; Xu, T.; Modeling, Analysis and Control of Networked Evolutionary Games; IEEE Trans. Autom. Control: 2015; Volume 60 ,2402-2415. · Zbl 1360.91026
[53] Cheng, D.; Qi, H.; Liu, Z.; From STP to game-based control; Sci. China Inf. Sci.: 2018; Volume 61 ,010201.
[54] Ge, M.; Zhao, J.; Xing, H.; Wang, J.; Impact of social punishment on networked evolutionary games via semi-tensor product method; Proceedings of the 35th Chinese Control Conference: ; ,165-170.
[55] Liu, T.; Wang, Y.; Cheng, D.; Dynamics and stability of potential hyper-networked evolutionary games; Int. J. Autom. Comput.: 2017; Volume 14 ,229-238.
[56] Cheng, D.; Xu, T.; He, F.; Qi, H.; On dynamics and Nash equilibriums of networked games; IEEE/CAA J. Autom. Sin.: 2014; Volume 1 ,10-18.
[57] Cheng, D.; Topological structure of graph-based networked evolutionary games; J. Shandong Univ. Nat. Sci.: 2021; Volume 56 ,11-22.
[58] Cheng, D.; On finite potential game; Automatica: 2014; Volume 50 ,1793-1801. · Zbl 1296.93069
[59] Guo, P.; Wang, Y.; Li, H.; Stable degree analysis for strategy profifiles of evolutionary networked games; Sci. China Inf. Sci.: 2016; Volume 59 ,052204.
[60] Zhao, G.; Li, H.; Sun, W.; Alsaadi, F.E.; Modelling and strategy consensus for a class of networked evolutionary games; Int. J. Syst. Sci.: 2018; Volume 49 ,2548-2557. · Zbl 1482.91027
[61] Tang, Y.; Li, L.; Lu, J.; Modeling and optimization for networked evolutionary games with player exit mechanism: Semi-tensor product of matrices method; Phys. A Stat. Mech. Its Appl.: 2022; Volume 590 ,126710. · Zbl 07485911
[62] Wang, H.; Liu, X.; Dynamics and optimization of control networked evolutionary games with local information; Control Theory Appl.: 2019; Volume 36 ,279-285. · Zbl 1438.91018
[63] Cheng, D.; Xu, T.; Qi, H.; Evolutionarily stable strategy of networked evolutionary games; IEEE Trans. Neural Netw. Learn. Syst.: 2014; Volume 25 ,1335-1345.
[64] Ohtsuki, H.; Nowak, M.A.; The replicator equation on graphs; J. Theor. Biol.: 2006; Volume 243 ,86-97. · Zbl 1447.91024
[65] Mao, Y.; Wang, L.; Liu, Y.; Lu, J.; Wang, Z.; Stabilization of evolutionary networked games with length-r information; Appl. Math. Comput.: 2018; Volume 337 ,442-451. · Zbl 1427.91063
[66] Wang, Y.; Cheng, D.; Dynamics and stability of evolutionary games with time-invariant delay in strategies; Proceedings of the 27th Chinese Control and Decision Conference: ; ,6447-6452.
[67] Zhao, G.; Wang, Y.; Li, H.; A matrix approach to the modeling and analysis of networked evolutionary games with time delays; IEEE/CAA J. Autom. Sin.: 2018; Volume 5 ,818-826.
[68] Zheng, Y.; Li, C.; Feng, J.; Modeling and dynamics of networked evolutionary game with switched time delay; IEEE Trans. Control Netw. Syst.: 2021; Volume 8 ,1778-1787.
[69] Fu, S.; Li, H.; Zhao, G.; Modelling and strategy optimisation for a kind of networked evolutionary games with memories under the bankruptcy mechanism; Int. J. Control: 2017; Volume 91 ,1104-1117. · Zbl 1390.93120
[70] Fu, S.; Wang, Y.; Zhao, G.; A matrix approach to the analysis and control of networked evolutionary games with bankruptcy mechanism; Asian J. Control: 2017; Volume 19 ,717-727. · Zbl 1365.93171
[71] Li, X.; Deng, L.; Zhao, J.; Optimal control of networked evolutionary games with bankruptcy risk; IEEE Access: 2020; Volume 8 ,125806-125813.
[72] Wang, W.; Lai, Y.; Armbruster, D.; Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks; Chaos: 2011; Volume 21 ,033112. · Zbl 1317.91005
[73] Fu, S.; Zhao, G.; Li, H.; Model and control for a class of networked evolutionary games with finite memories and time-varying networks; Circuits, Syst. Signal Process.: 2018; Volume 37 ,3093-3114. · Zbl 1417.91097
[74] Yuan, H.; Chen, Z.; Zhang, Z.; Zhu, R.; Liu, Z.; Modeling and optimization control of networked evolutionary games with heterogeneous memories and switched topologies; Knowl.-Based Syst.: 2022; Volume 252 ,109378.
[75] Zhao, G.; Wang, Y.; Formulation and optimization control of a class of networked evolutionary games with switched topologies; Nonlinear Anal. Hybrid Syst.: 2016; Volume 22 ,98-107. · Zbl 1415.91048
[76] Zhu, R.; Chen, Z.; Zhang, J.; Liu, Z.; Strategy optimization of weighted networked evolutionary games with switched topologies and threshold; Knowl.-Based Syst.: 2022; Volume 235 ,107644.
[77] Ding, X.; Li, H.; Yang, Q.; Zhou, Y.; Alsaedi, A.; Alsaadi, F.E.; Stochastic stability and stabilization of n-person random evolutionary Boolean games; Appl. Math. Comput.: 2017; Volume 306 ,1-12. · Zbl 1411.91084
[78] Ding, X.; Li, H.; Optimal control of random evolutionary Boolean games; Int. J. Control: 2019; Volume 94 ,144-152. · Zbl 1466.93178
[79] Li, H.; Ding, X.; Alsaedi, A.; Alsaadi, F.E.; Stochastic set stabilisation of n-person random evolutionary boolean games and its applications; IET Control Theory Appl.: 2017; Volume 11 ,2152-2160.
[80] Tang, Y.; Li, L.; Lu, J.; Modeling and optimization of a class of networked evolutionary games with random entrance and time delays; Proceedings of the 2020 Chinese Automation Congress: ; ,4007-4012.
[81] Zhao, G.; Wang, Y.; Li, H.; A matrix approach to modeling and optimization for dynamic games with random entrance; Appl. Math. Comput.: 2016; Volume 290 ,9-20. · Zbl 1410.91101
[82] Young, H.P.; The evolution of conventions; Econometrica: 1993; Volume 61 ,57-84. · Zbl 0773.90101
[83] Traulsen, A.; Nowak, M.A.; Pacheco, J.M.; Stochastic dynamics of invasion and fixation; Phys. Rev. E: 2006; Volume 74 ,011909.
[84] Babichenko, Y.; Tamuz, O.; Graphical potential games; J. Econ. Theory: 2016; Volume 163 ,889-899. · Zbl 1369.91033
[85] Fudenberg, D.; Levine, D.K.; ; The Theory of Learning in Games: Cambridge, UK 1998; . · Zbl 0939.91004
[86] Li, H.; Zheng, Y.; Alsaadi, F.; Algebraic formulation and topological structure of Boolean networks with state-dependent delay; J. Comput. Appl. Math.: 2019; Volume 350 ,87-97. · Zbl 1419.91096
[87] Ding, X.; Li, H.; Wang, S.; Set stability and synchronization of logical networks with probabilistic time delays; J. Frankl. Inst.: 2018; Volume 355 ,7735-7748. · Zbl 1398.93353
[88] Meng, M.; Lam, J.; Feng, J.; Cheung, K.; Stability and stabilization of Boolean networks with stochastic delays; IEEE Trans. Autom. Control: 2019; Volume 64 ,790-796. · Zbl 1482.93677
[89] Kong, X.; Li, H.; Time-variant feedback stabilization of constrained delayed Boolean networks under nonuniform sampled-data control; Int. J. Control. Autom. Syst.: 2021; Volume 19 ,1819-1827.
[90] Zheng, Y.; Li, H.; Feng, J.; State-feedback set stabilization of logical control networks with state-dependent delay; Sci. China Inf. Sci.: 2021; Volume 64 ,169203.
[91] Han, M.; Liu, Y.; Tu, Y.; Controllability of Boolean control networks with time delays both in states and inputs; Neurocomputing: 2014; Volume 129 ,467-475.
[92] Li, F.; Sun, J.; Controllability of Boolean control networks with time delays in states; Automatica: 2011; Volume 47 ,603-607. · Zbl 1220.93010
[93] Lu, J.; Zhong, J.; Ho, D.; Tang, Y.; Cao, J.; On controllability of delayed Boolean control networks; SIAM J. Control Optim.: 2016; Volume 54 ,475-494. · Zbl 1331.93022
[94] Zhang, L.; Zhang, K.; Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories; Sci. China Inf. Sci.: 2013; Volume 56 ,108201. · Zbl 1488.93018
[95] Zhang, L.; Zhang, K.; Controllability and observability of Boolean control networks with time-variant delays in states; IEEE Trans. Neural Netw. Learn. Syst.: 2013; Volume 24 ,1478-1484.
[96] Jiang, D.; Zhang, K.; Observability of Boolean control networks with time-variant delays in states; J. Syst. Sci. Complex.: 2018; Volume 31 ,436-445. · Zbl 1401.93045
[97] Li, F.; Sun, J.; Wu, Q.; Observability of Boolean control networks with state time delays; IEEE Trans. Neural Netw.: 2011; Volume 22 ,948-954.
[98] Szolnoki, A.; Perc, M.; Danku, Z.; Making new connections towards cooperation in the prisoner’s dilemma game; Europhys. Lett.: 2008; Volume 84 ,50007.
[99] Allen, B.; Gore, J.; Nowak, M.A.; Spatial dilemmas of diffusible public goods; eLife: 2013; Volume 2 ,e01169.
[100] Fu, F.; Nowak, M.A.; Christakis, N.A.; Fowler, J.H.; The evolution of homophily; Sci. Rep.: 2012; Volume 2 ,845.
[101] Fu, F.; Nowak, M.A.; Global migration can lead to stronger spatial selection than local migration; J. Stat. Phys.: 2013; Volume 151 ,637-653. · Zbl 1264.92040
[102] Zhang, K.; Johansson, K.H.; Efficient verification of observability and reconstructibility for large Boolean control networks with special structures; IEEE Trans. Autom. Control: 2020; Volume 65 ,5144-5158. · Zbl 1536.93101
[103] Hu, H.; Wang, X.; Evolution of a large online social network; Phys. Lett. A: 2009; Volume 373 ,1105-1110.
[104] Perc, M.; Chaos promotes cooperation in the spatial prisoner’s dilemma game; Europhys. Lett.: 2006; Volume 75 ,841-846.
[105] Perc, M.; Transition from Gaussian to Lévy distributions of stochastic payoff variations in the spatial prisoner’s dilemma game; Phys. Rev. E: 2007; Volume 75 ,022101.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.