×

Robust stability of switched Boolean networks with function perturbation. (English) Zbl 1500.92037

Summary: In genetic regulatory networks, gene mutations are one of natural phenomena, which attract much attention by biological researchers. In modeling gene networks using switched Boolean networks (SBNs), gene mutations can be described by function perturbations, which is a meaningful issue in analyzing function perturbation of SBNs. This paper studies robust stability of SBNs with function perturbation. With the help of semi-tensor product (STP) of matrices, one equivalent algebraic form of SBNs is established. By constructing two state sets, a criterion for global stability of SBNs under arbitrary switching signals is proposed. In order to relax the conditions of global stability, pointwise stabilizability and consistent stabilizability of SBNs are further considered. Based on state reachable sets, several criteria are established for the proposed kinds of stability. Finally, the obtained results are verified by two examples and lac operon in the Escherichia coli, respectively.

MSC:

92C42 Systems biology, networks
93D09 Robust stability
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C29 Boolean control/observation systems
93B70 Networked control
Full Text: DOI

References:

[1] Kauffman, S., Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theoret. Biol., 22, 3, 437-467 (1969)
[2] Albert, R.; Othmer, H., The topology and signature of the regulatory interactions predict the expression pattern of the segment polarity genes in drosophila melanogaster, J. Theoret. Biol., 223, 1, 1-18 (2003) · Zbl 1464.92108
[3] Akutsu, T.; Hayashida, M.; Ching, W.; Ng, M., Control of Boolean networks: Hardness results and algorithms for tree structured networks, J. Theoret. Biol., 244, 4, 670-679 (2007) · Zbl 1450.92040
[4] Aldana, M., Boolean dynamics of networks with scale-free topology, Physica D, 185, 1, 45-66 (2003) · Zbl 1039.94016
[5] Pal, R.; Datta, A.; Dougherty, E., Optimal infinite-horizon control for probabilistic Boolean networks, IEEE Trans. Signal Process., 54, 6, 2375-2387 (2006) · Zbl 1374.94952
[6] Zhu, Q.; Gao, Z.; Liu, Y.; Gui, W., Categorization problem on controllability of Boolean control networks, IEEE Trans. Automat. Control, 66, 5, 2297-2303 (2021) · Zbl 1536.93097
[7] Jaleco, A.; Neves, H.; Hooijberg, E.; Gameiro, P.; Clode, N.; Haury, M.; Henrique, D.; Parreira, L., Differential effects of notch ligands delta-1 and jagged-1 in human lymphoid differentiation, J. Exp. Med., 194, 7, 991-1002 (2001)
[8] Cheng, D.; Qi, H.; Li, Z., Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach (2011), Springer: Springer London, U.K. · Zbl 1209.93001
[9] Cheng, D.; Qi, H.; Li, Z.; Liu, J., Stability and stabilization of Boolean networks, Internat. J. Robust Nonlinear Control, 21, 2, 134-156 (2011) · Zbl 1213.93121
[10] Guo, Y.; Wang, P.; Gui, W.; Yang, C., Set stability and set stabilization of Boolean control networks based on invariant subsets, Automatica, 61, 106-112 (2015) · Zbl 1327.93347
[11] Zhong, J.; Li, B.; Liu, Y.; Lu, J.; Gui, W., Steady-state design of large-dimensional Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., 32, 3, 1149-1161 (2021)
[12] Zhong, J.; Liu, Y.; Lu, J.; Gui, W., Pinning control for stabilization of Boolean networks under knock-out perturbation, IEEE Trans. Automat. Control, 67, 3, 1550-1557 (2022) · Zbl 1537.93358
[13] Sun, T.; Sun, X.; Gao, Y.; Sun, P., Stabilizability analysis of logical networks with switching signal and control input, Nonlinear Anal. Hybrid Syst., 36, Article 100875 pp. (2020) · Zbl 1441.93206
[14] Guo, Y.; Wu, Y.; Gui, W., Discrete-time systems under restricted switching via logic dynamical generator and STP-based mergence of hybrid state, IEEE Trans. Automat. Control (2022) · Zbl 1537.93578
[15] Liu, Y.; Zhong, J.; Daniel, H.; Gui, W., Minimal observability of Boolean networks, Sci. China Inf. Sci., 65, Article 152203 pp. (2022)
[16] Chen, H.; Sun, J., Output controllability and optimal output control of state-dependent switched Boolean control networks, Automatica, 50, 7, 1929-2934 (2014) · Zbl 1296.93023
[17] Zhong, J.; Ho, D. W.C.; Lu, J., A new approach to pinning control of Boolean networks, IEEE Trans. Control Netw. Syst. (2022)
[18] Yang, Y.; Liu, Y.; Lou, J.; Wang, Z., Observability of switched boolean control networks using algebraic forms, Discrete Contin. Dyn. Syst.-Ser. S, 14, 4, 1519-1533 (2021) · Zbl 1478.93077
[19] Cheng, D.; Qi, H., Controllability and observability of Boolean control networks, Automatica, 45, 7, 1659-1667 (2009) · Zbl 1184.93014
[20] Zhang, L.; Zhang, K., Controllability and observability of Boolean control networks with time-variant delays in states, IEEE Trans. Neural Netw. Learn. Syst., 24, 9, 1478-1484 (2013)
[21] Chen, H.; Li, X.; Sun, J., Stabilization, controllability and optimal control of Boolean networks with impulsive effects and state constraints, IEEE Trans. Automat. Control, 60, 3, 806-811 (2015) · Zbl 1360.93093
[22] Fornasini, E.; Valcher, M. E., Optimal control of Boolean control networks, IEEE Trans. Automat. Control, 59, 5, 1258-1270 (2014) · Zbl 1360.93387
[23] Li, F.; Lu, X.; Yu, Z., Optimal control algorithms for switched Boolean network, J. Franklin Inst. B, 351, 6, 3490-3501 (2014) · Zbl 1290.93044
[24] Wu, Y.; Guo, Y.; Toyoda, M., Iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., 32, 6, 2910-2924 (2021)
[25] Acernese, A.; Yerudkar, A.; Glielmo, L.; Vecchio, C., Reinforcement learning approach to feedback stabilization problem of probabilistic Boolean control networks, IEEE Control Syst. Lett., 5, 1, 337-342 (2021)
[26] Ay, F.; Xu, F.; Kahveci, T., Scalable steady state analysis of Boolean biological regulatory networks, PLoS One, 4, 12, Article e7992 pp. (2009)
[27] Yu, Y.; Meng, M.; Feng, J.; Wang, P., Stabilizability analysis and switching signals design of switched Boolean networks, Nonlinear Anal. Hybrid Syst., 30, 31-44 (2018) · Zbl 1437.93105
[28] Chen, H.; Sun, J., Global stability and stabilization of switched Boolean network with impulsive effects, Appl. Math. Comput., 224, 625-634 (2013) · Zbl 1334.94108
[29] Li, H.; Wang, Y.; Liu, Z., Stability analysis for switched boolean networks under arbitrary switching signals, IEEE Trans. Automat. Control, 59, 7, 1978-1982 (2014) · Zbl 1360.93502
[30] Azuma, S.; Yoshida, T.; Sugie, T., Structural monostability of activation-inhibition Boolean networks, IEEE Trans. Control Netw. Syst., 4, 2, 179-190 (2017) · Zbl 1370.93223
[31] Liu, Z.; Zhong, J.; Liu, Y.; Gui, W., Weak stabilization of Boolean networks under state-flipped control, IEEE Trans. Neural Netw. Learn. Syst. (2022)
[32] Chen, R.; Eshleman, J.; Brodsky, R.; Medof, M., Glycophosphatidylinositol-anchored protein deficiency as a marker of mutator phenotypes in cancer, Cancer Res., 61, 654-658 (2001)
[33] Cooper, D., Human gene mutation in pathology and evolution, J. Inherit. Metab. Dis., 25, 3, 157-182 (2002)
[34] Xiao, Y.; Dougherty, E. R., The impact of function perturbations in Boolean networks, Bioinformations, 23, 10, 1265-1273 (2007)
[35] Li, H.; Yang, X.; Wang, S., Robustness for stability and stabilization of Boolean networks with stochastic function perturbations, IEEE Trans. Automat. Control, 66, 3, 1231-1237 (2021) · Zbl 1536.92047
[36] Ren, Y.; Ding, X.; Zhong, J.; Lu, J., Robust stability in distribution of boolean networks under multi-bits stochastic function perturbations, Nonlinear Anal. Hybrid Syst., 42, Article 101095 pp. (2021) · Zbl 1478.93493
[37] Li, X.; Li, H.; Zhao, G., Function perturbation impact on feedback stabilization of Boolean control networks, IEEE Trans. Neural Netw. Learn. Syst., 30, 8, 2548-2554 (2019)
[38] Veliz-Cuba, A.; Stigler, B., Boolean models can explain bistability in the lac operon, J. Comput. Biol., 18, 6, 783-794 (2011)
[39] Li, H.; Wang, Y., Consistent stabilizability of switched Boolean networks, Neural Netw., 46, 183-189 (2013) · Zbl 1296.93166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.