×

On controllability of delayed Boolean control networks. (English) Zbl 1331.93022

Summary: This paper is devoted to studying the trajectory and state controllability of Boolean Control Networks (BCNs) with time delay. In contrast to BCNs without time delay, the dynamics of delayed BCNs are determined by a sequence of initial states, named here trajectories. Trajectory controllability means that there exists a control signal steering a system from an initial trajectory to a desired trajectory, while state controllability means that there exists a control signal steering an initial state to a given state. Here, both trajectory controllability and state controllability will be studied. It should be noted that in this paper, trajectory controllability does not mean tracking or following a given trajectory. In fact it means to control BCNs to a destination trajectory of length \(\mu\) at the \(k\)-th step. Using the semi-tensor product of matrices, the delayed BCNs are first converted into an equivalent algebraic description, and then some necessary and sufficient conditions are derived for the trajectory controllability of delayed BCNs. We further present a bijection between the state of BCNs and the trajectory of length \(\mu\), which is then used to derive some necessary and sufficient conditions for the state controllability of delayed BCNs. Both the problems of controlling an initial state sequence to a desired state and a desired trajectory are first investigated. We also consider the issues of avoiding some specific states which may cause diseases or lead to dangerous situations. Numerical examples are given to illustrate our theoretical results.

MSC:

93B05 Controllability
93D99 Stability of control systems
93A15 Large-scale systems
Full Text: DOI

References:

[1] J. Xu, K.-W. Chung, and C.-L. Chan, {\it An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks}, SIAM J. Appl. Dyn. Syst., 6 (2007), pp. 29-60. · Zbl 1210.34086
[2] S. A. Kauffman, {\it Metabolic stability and epigenesis in randomly constructed genetic nets}, J. Theoret. Biol., 22 (1969), pp. 437-467.
[3] W. W. Yu, G. R. Chen, J. H. Lü, and J. Kurths, {\it Synchronization via pinning control on general complex networks}, SIAM J. Control Optim., 51 (2013), pp. 1395-1416. · Zbl 1266.93071
[4] H. Huang, T. W. Huang, and X. P. Chen, {\it Global exponential estimates of delayed stochastic neural networks with Markovian switching}, Neural Networks, 36 (2012), pp. 136-145. · Zbl 1258.93097
[5] S. Huang and D. E. Ingber, {\it Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks}, Exp. Cell Res., 261 (2000), pp. 91-103.
[6] K. Kürten, {\it Correspondence between neural threshold networks and Kauffman Boolean cellular automata}, J. Phys. A, 21 (1988), pp. L615-L619. · Zbl 0661.68080
[7] M. Golubitsky, I. Stewart, and A. Török, {\it Patterns of synchrony in coupled cell networks with multiple arrows}, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 78-100. · Zbl 1090.34030
[8] D. Chu, N. R. Zabet, and B. Mitavskiy, {\it Models of transcription factor binding: Sensitivity of activation functions to model assumptions}, J. Theoret. Biol., 257 (2009), pp. 419-429. · Zbl 1400.92182
[9] J. L. Liang, J. Lam, and Z. D. Wang, {\it State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates}, Phys. Lett. A, 373 (2009), pp. 4328-4337. · Zbl 1234.92023
[10] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, {\it Stochastic gene expression in a single cell}, Science, 297 (2002), pp. 1183-1186.
[11] W. J. Blake, M. K\aern, C. R. Cantor, and J. J. Collins, {\it Noise in eukaryotic gene expression}, Nature, 422 (2003), pp. 633-637.
[12] C. Farrow, J. Heidel, J. Maloney, and J. Rogers, {\it Scalar equations for synchronous Boolean networks with biological applications}, IEEE Trans. Neural Networks, 15 (2004), pp. 348-354.
[13] B. Samuellson and C. Troein, {\it Superpolynomial growth in the number of attractors in Kauffman networks}, Phys. Rev. Lett., 90 (2003), 098701. · Zbl 1267.82104
[14] M. Aldana, {\it Boolean dynamics of networks with scale-free topology}, Phys. D, 185 (2003), pp. 45-66. · Zbl 1039.94016
[15] J. Heidel, J. Maloney, C. Farrow, and J. A. Rogers, {\it Finding cycles in synchronous Boolean networks with applications to biochemical systems}, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), pp. 535-552. · Zbl 1056.37013
[16] B. Drossel, T. Mihaljev, and F. Greil, {\it Number and length of attractors in a critical Kauffman model with connectivity one}, Phys. Rev. Lett., 94 (2005), 088701.
[17] D. Z. Cheng and H. S. Qi, {\it A linear representation of dynamics of Boolean networks}, IEEE Trans. Automat. Control, 55 (2010), pp. 2251-2258. · Zbl 1368.37025
[18] D. Z. Cheng, H. S. Qi, and Z. Q. Li, {\it Analysis and Control of Boolean Networks: A Semi-tensor Product Approach}, Springer-Verlag, London, 2011. · Zbl 1209.93001
[19] D. Z. Cheng and H. S. Qi, {\it Controllability and observability of Boolean control networks}, Automatica, 45 (2009), pp. 1659-1667. · Zbl 1184.93014
[20] Y. Zhao, H. S. Qi, and D. Z. Cheng, {\it Input-state incidence matrix of Boolean control networks and its applications}, Systems Control Lett., 59 (2010), pp. 767-774. · Zbl 1217.93026
[21] Y. Liu, L. J. Sun, J. Q. Lu, and J. L. Liang, {\it Feedback controller design for the synchronization of Boolean control networks}, IEEE Trans. Neural Networks Learn. Syst., DOI:10.1109/TNNLS.2015.2461012.
[22] D. Z. Cheng, H. S. Qi, Z. Q. Li, and J. B. Liu, {\it Stability and stabilization of Boolean networks}, Internat. J. Robust Nonlinear Control, 21 (2011), pp. 134-156. · Zbl 1213.93121
[23] Y. Zhao, J. Kim, and M. Filippone, {\it Aggregation algorithm towards large-scale Boolean network analysis}, IEEE Trans. Automat. Control, 58 (2013), pp. 1976-1985. · Zbl 1369.94620
[24] J. Zhong, J. Q. Lu, Y. Liu, and J. D. Cao, {\it Synchronization in an array of output-coupled Boolean networks with time delay}, IEEE Trans. Neural Networks Learn. Syst., 25 (2014), pp. 2288-2294.
[25] J. Zhong, J. Q. Lu, T. W. Huang, and J. D. Cao, {\it Synchronization of master-slave Boolean networks with impulsive effects: Necessary and sufficient criteria}, Neurocomputing, 143 (2014), pp. 269-274.
[26] J. Q. Lu, J. Zhong, Y. Tang, T. W. Huang, J. D. Cao, and J. Kurths, {\it Synchronization in output-coupled temporal Boolean networks}, Sci. Rep., 4 (2014), 6292
[27] J. Q. Lu, J. Zhong, L. L. Li, D. W. C. Ho, and J. D. Cao, {\it Synchronization analysis of master-slave probabilistic Boolean networks}, Sci. Rep., 5 (2015), 13437 .
[28] J. D. Cao, J. L. Liang, and J. Lam, {\it Exponential stability of high-order bidirectional associative memory neural networks with time delays}, Phys. D. 199 (2004), pp. 425-436. · Zbl 1071.93048
[29] Z. Q. Li, Y. Zhao, and D. Z. Cheng, {\it Structure of higher order Boolean networks}, J. Univ. Chinese Acad. Sci., 28 (2011), pp. 431-447.
[30] C. Altafini, {\it Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds}, Systems Control Lett., 58 (2009), pp. 213-216. · Zbl 1159.93005
[31] I. R. Petersen, {\it A notion of possible controllability for uncertain linear systems with structured uncertainty}, Automatica, 45 (2009), pp. 134-141. · Zbl 1154.93319
[32] J. M. Ball, J. E. Marsden, and M. Slemrod, {\it Controllability for distributed bilinear systems}, SIAM J. Control Optim., 20 (1982), pp. 575-597. · Zbl 0485.93015
[33] J. Klamka, {\it Constrained controllability of semilinear systems with delays}, Nonlinear Dynam., 56 (2009), pp. 169-177. · Zbl 1170.93009
[34] X. S. Yang, J. D. Cao, and Z. C. Yang, {\it Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller}, SIAM J. Control Optim., 51 (2013), pp. 3486-3510. · Zbl 1281.93052
[35] X. S. Yang, J. D. Cao, and J. Q. Lu, {\it Synchronization of coupled neural networks with random coupling strengths and mixed probabilistic time-varying delays}, Internat. J. Robust Nonlinear Control, 23 (2013), pp. 2060-2081. · Zbl 1278.93021
[36] J. Q. Lu and D. W. C. Ho, {\it Globally exponential synchronization and synchronizability for general dynamical networks}, IEEE Trans. Systems, Man and Cybernetics, Part B, 40 (2010), pp. 350-361.
[37] B. Liu and D. J. Hill, {\it Stability via hybrid-event-time Lyapunov function and impulsive stabilization for discrete-time delayed switched systems}, SIAM J. Control Optim., 52 (2014), pp. 1338-1365. · Zbl 1292.93103
[38] D. Laschov and M. Margaliot, {\it Controllability of Boolean control networks via the Perron-Frobenius theory}, Automatica, 48 (2012), pp. 1218-1223. · Zbl 1244.93026
[39] F. F. Li, X. W. Lu, and Z. X. Yu, {\it Optimal control algorithms for switched Boolean network}, J. Franklin Inst., 351 (2014), pp. 3490-3501. · Zbl 1290.93044
[40] Y. Liu, J. Q. Lu, and B. Wu, {\it Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks}, ESAIM: Control Optim. Calc. Var., 20 (2014), pp. 158-173. · Zbl 1282.93055
[41] Y. Liu, H. Chen, J. Lu, and B. Wu, {\it Controllability of probabilistic Boolean control networks based on transition probability matrices}, Automatica, 52 (2015), pp. 340-345. · Zbl 1309.93026
[42] J. Q. Lu, J. Zhong, C. Huang, and J. D. Cao, {\it On pinning controllability of Boolean control networks}, IEEE Trans. Automat. Control, DOI:10.1109/TAC.2015.2478123. · Zbl 1359.93057
[43] Y. Zhao, Z. Q. Li, and D. Z. Cheng, {\it Optimal control of logical control networks}, IEEE Trans. Automat. Control, 56 (2011), pp. 1766-1776. · Zbl 1368.93396
[44] F. F. Li and J. T. Sun, {\it Controllability of higher order Boolean control networks}, Appl. Math. Comput., 219 (2012), pp. 158-169. · Zbl 1311.92083
[45] E. J. Davison and E. G. Kunze, {\it Some sufficient conditions for the global and local controllability of nonlinear time-varying systems}, SIAM J. Control, 8 (1970), pp. 489-497. · Zbl 0236.93007
[46] J. L. Lions, {\it Exact controllability, stabilization and perturbations for distributed systems}, SIAM Rev., 30 (1988), pp. 1-68. · Zbl 0644.49028
[47] H. J. Sussmann, {\it A general theorem on local controllability}, SIAM J. Control Optim., 25 (1987), pp. 158-194. · Zbl 0629.93012
[48] W. E. Schmitendorf and B. R. Barmish, {\it Null controllability of linear systems with constrained controls}, SIAM J. Control Optim., 18 (1980), pp. 327-345. · Zbl 0457.93012
[49] D. N. Chalishajar, R. K. George, A. K. Nandakumaran, and F. S. Acharya, {\it Trajectory controllability of nonlinear integro-differential system}, J. Franklin Inst., 347 (2010), pp. 1065-1075. · Zbl 1202.93011
[50] R. A. Horn and C. R. Johnson, {\it Matrix Analysis}, Cambridge University Press, Cambridge 2012.
[51] A. Berman and R. J. Plemmons, {\it Nonnegative Matrices in the Mathematical Sciences}, SIAM, Philadelphia, PA, 1987. · Zbl 0815.15016
[52] B. C. Goodwin, {\it Temporal organization in Cells: A Dynamic Theory of Cellular Control Processes}, Academic Press, New York, 1963.
[53] J. K. Hale and V. Lunel, {\it Introduction to Functional Differential Equations}, Springer-Verlag, New York, 1993. · Zbl 0787.34002
[54] Z. G. Wu, P. Shi, H. Y. Su, and J. Chu, {\it Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling}, IEEE Trans. Neural Networks Learn. Syst., 23 (2012), pp. 1368-1376.
[55] W. Zou and M. Zhan, {\it Splay states in a ring of coupled oscillators: From local to global coupling}, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 1324-1340. · Zbl 1185.34044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.