×

Response of frequency domain in generalized thermoelastic medium under modified Green-Lindsay with non-local and two temperature. (English) Zbl 07885414

Summary: This paper introduces a novel model for a generalized thermoelastic medium with homogeneity and isotropy, by applying the Modified Green-Lindsay (MG-L) theory of thermoelasticity. The focus is on analysing the deformation due to time-harmonic by considering the impact of non-local and two-temperature (TT) parameters. The governing equations are solved using dimensionless quantities and a potential function. To address the boundary value problem in the frequency domain, the Hankel transform is employed. Specific boundary conditions, such as a normal force or thermal source, are applied. Analytical expressions for components of displacement, stresses, conductive temperature, and temperature distribution are derived in the transformed domain A numerical inversion technique is utilised to translate the solution into the physical domain. The study delves into exploring the influence of non-local and two-temperature parameters, as well as different theories of thermoelasticity on stresses, temperature distribution and conductive temperature. These effects are visually represented through graphical illustrations. Additionally, special cases of interest are examined and discussed.
© 2024 Wiley-VCH GmbH.

MSC:

74F05 Thermal effects in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids15(5), 299‐309 (1967). https://doi.org/10.1016/0022‐5096(67)90024‐5 · Zbl 0156.22702 · doi:10.1016/0022‐5096(67)90024‐5
[2] Green, A.E., Lindsay, K.A.: Thermoelasticity, J. Elast.2, 1‐7 (1972). https://doi.org/10.1007/BF00045689 · Zbl 0775.73063 · doi:10.1007/BF00045689
[3] Chen, E.P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperature. Z. fur Angew. Math. Phys.19(4), 614‐627 (1968). https://doi.org/10.1007/BF01594969 · Zbl 0159.15103 · doi:10.1007/BF01594969
[4] Youssef, H.M.: Theory of two‐temperature‐generalized thermoelasticity, IMA J. Appl. Math.71(3), 383-390 (2006). https://doi.org/10.1093/imamat/hxh101 · Zbl 1115.74019 · doi:10.1093/imamat/hxh101
[5] Ezzat, M.A., El‐Bary, A.A.: Magneto‐thermoelectric viscoelastic materials with memory‐dependent derivative involving two‐temperature, Int. J. Appl. Electromagnet. Mech.50(4), 549-567 (2016). https://doi.org/10.3233/JAE‐150131 · doi:10.3233/JAE‐150131
[6] Jangid, K., Mukhopadhyay, S.: Thermoelastic interactions on temperature rate dependent and two‐temperature thermoelasticity in an infinite medium subjected to a line heat source, Z. fur Angew. Math. Phys.73 (2022) https://doi.org/10.1007/s00033‐022‐01830‐9 · Zbl 1495.80006 · doi:10.1007/s00033‐022‐01830‐9
[7] Al‐Lehaibi, E.A.N.: The variationally principle of two‐temperature thermoelasticity in the absence of the energy dissipation theorem, J. Umm Al‐Qura Univ. Eng. Archit.13, 81-85 (2022). https://doi.org/10.1007/s43995‐022‐00003‐z · doi:10.1007/s43995‐022‐00003‐z
[8] Youssef, H.M., Al‐Lehaibi, E.A.N.: 2‐D mathematical model of hyperbolic two‐temperature generalized thermoelastic solid cylinder under mechanical damage effect, Arch. Appl. Mech.92, 945-960 (2022). https://doi.org/10.1007/s00419‐021‐02083‐0 · doi:10.1007/s00419‐021‐02083‐0
[9] Sachan, S., Kumar, R., Prasad, R.: Reciprocal and variational theorems on the two‐temperature Green-Lindsay thermoelasticity theory. Arch. Appl. Mech.93, 1555-1563 (2023). https://doi.org/10.1007/s00419‐022‐02345‐5 · doi:10.1007/s00419‐022‐02345‐5
[10] Eringen, A.C.: Theory of non‐local thermoelasticity, Int. J. Eng. Sci.12, 1063‐1077 (1974). https://doi.org/10.1016/0020‐7225(74)90033‐0 · Zbl 0289.73061 · doi:10.1016/0020‐7225(74)90033‐0
[11] Yu, Y.J., Tian, X., Xiong, Q.: Non‐local thermoelasticity based on non‐local heat conduction and non‐local elasticity. Eur. J. Mech. A/Sol.60, 238‐253 (2016). https://doi.org/10.1016/j.euromechsol.2016.08.004 · Zbl 1406.74187 · doi:10.1016/j.euromechsol.2016.08.004
[12] Bachher, M., Sarkar, N.: Non‐local theory of thermoelastic materials with voids and fractional derivative heat transfer. Waves Random Complex Medium29(4), 1‐19 (2018). https://doi.org/10.1080/17455030.2018.1457230 · Zbl 1505.74005 · doi:10.1080/17455030.2018.1457230
[13] Saeed, T., Abbas, I.: Effects of the non‐local thermoelastic model in a thermoelastic nanoscale material. Mathematics10(2), 284 (2022). https://doi.org/10.3390/math10020284 · doi:10.3390/math10020284
[14] Ezzat, M.A., Al‐Muhiameed, Z.I.A.: Thermo‐mechanical response of size‐dependent piezoelectric materials in thermo‐viscoelasticity theory. Steel Compos. Struct.45, 535-546 (2022). https://doi.org/10.12989/scs.2022.45.4.535 · doi:10.12989/scs.2022.45.4.535
[15] Ezzat, M.A., Ezzat, S.M., Alkharraz, M.Y.: State‐space approach to non‐local thermo‐viscoelastic piezoelectric materials with fractional dual‐phase lag heat transfer. Int. J. Numer. Methods Heat Fluid Flow32(12), 3726‐3750 (2022). https://doi.org/10.1108/HFF‐02‐2022‐0097 · doi:10.1108/HFF‐02‐2022‐0097
[16] Ezzat, M.A., Ezzat, S.M., Alduraibi, N.S.: On size‐dependent thermo‐viscoelasticity theory for piezoelectric materials. Waves Random Complex Medium (2022) https://doi.org/10.1080/17455030.2022.2043569 · doi:10.1080/17455030.2022.2043569
[17] Abouelregal, A.E., Askar, S.S., Marin, M., Mohamed, B.: The theory of thermoelasticity with a memory‐dependent dynamic response for a thermo‐piezoelectric functionally graded rotating rod. Sci. Rep.13(1), 9052 (2023). https://doi.org/10.1038/s41598‐023‐36371‐2 · doi:10.1038/s41598‐023‐36371‐2
[18] Abouelregal, A.E.: Modeling and analysis of a thermoviscoelastic rotating micro‐scale beam under pulsed laser heat supply using multiple models of thermoelasticity. Thin‐Walled Struct.174(1), 109150 (2022). https://doi.org/10.1016/j.tws.2022.109150 · doi:10.1016/j.tws.2022.109150
[19] Abouelregal, A.E., Sedighi, H.M.: Elastic thermal deformation of an infinite copper material due to cyclic heat supply using higher‐order non‐local thermal modeling. Metals12(11) (2022). https://doi.org/10.3390/met12111927 · doi:10.3390/met12111927
[20] Abouelregal, A.E., Marin, M., Askar, S.S.: Analysis of the magneto‐thermoelastic vibrations of rotating Euler-Bernoulli nano beams using the non‐local elasticity model. Boundary Value Problems21(2023) (2023). https://doi.org/10.1186/s13661‐023‐01706‐5 · Zbl 1518.74029 · doi:10.1186/s13661‐023‐01706‐5
[21] Ezzat, M.A.: Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions. Int. J. Eng. Sci.33, 2011-2020 (1995). https://doi.org/10.1016/0020‐7225(95)00050‐8 · Zbl 0899.73071 · doi:10.1016/0020‐7225(95)00050‐8
[22] Ezzat, M.A., Othman, M.I., El‐Karamany, A.M.S.: State space approach to two‐dimensional generalized thermo‐viscoelasticity with two relaxation times. Int. J. Eng. Sci.40, 1251-1274 (2002). https://doi.org/10.1016/S0020‐7225(02)00012‐5 · Zbl 1211.74068 · doi:10.1016/S0020‐7225(02)00012‐5
[23] Ezzat, M.A., El‐Bary, A.A.: Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int. J. Therm. Sci.108, 62-69 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.04.020 · doi:10.1016/j.ijthermalsci.2016.04.020
[24] Ezzat, M.A., El‐Karamany, A.S., El‐Bary, A.A.: On dual‐phase‐lag thermoelasticity theory with memory‐dependent derivative. Mech. Adv. Mater. Struct.24(11), 908‐916 (2017). https://doi.org/10.1080/15376494.2016.1196793 · doi:10.1080/15376494.2016.1196793
[25] Yu, Y.J., Xue, Z., Tian, X.: A modified Green-Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica53, 2543-2554 (2018). https://doi.org/10.1007/s11012‐018‐0843‐1 · Zbl 1397.74059 · doi:10.1007/s11012‐018‐0843‐1
[26] Quintanilla, R.: Some qualitative results for a modification of the Green‐Lindsay thermoelasticity. Meccanica53(14), 3607-3613 (2018). https://doi.org/10.1007/s11012‐018‐0889‐0 · Zbl 1412.74021 · doi:10.1007/s11012‐018‐0889‐0
[27] Sarkar, N., Mondal, S.: Thermoelastic plane waves under the modified Green-Lindsay model with two‐temperature formulation. J. Appl. Math. Mech.100(11) (2020). https://doi.org/10.1002/zamm.201900267 · Zbl 07812943 · doi:10.1002/zamm.201900267
[28] Sarkar, N., De, S., Sarkar, N.: Modified Green-Lindsay model on the reflection and propagation of thermoelastic plane waves at an isothermal stress‐free surface. Indian J. Phys.94(8), 1215‐1225 (2020). https://doi.org/10.1007/s12648‐019‐01566‐9 · doi:10.1007/s12648‐019‐01566‐9
[29] Sarkar, N., De, S.: Waves in magneto‐thermoelastic solids under modified Green‐Lindsay mode. J. Therm. Stresses43(5), 594‐611 (2020). https://doi.org/10.1080/01495739.2020.1712286 · doi:10.1080/01495739.2020.1712286
[30] Shakeriaski, F., Ghodrat, M., Escobedo‐Diaz, J., Behnia, M.: Modified Green-Lindsay thermoelasticity wave propagation in elastic materials under thermal shocks. J. Comput. Des. Eng.8(1), 36-54 (2021). doi.org/10.1093/jcde/qwaa06 · doi:10.1093/jcde/qwaa06
[31] Kumar, R., Kaushal, S., Sharma, G.: Mathematical model for the deformation in a Modified Green-Lindsay thermoelastic medium with non‐local and two‐temperature effects. J. Appl. Mech. Tech. Phys.63, 448-457 (2022). https://doi.org/10.1134/S0021894422030099 · Zbl 1502.74033 · doi:10.1134/S0021894422030099
[32] Eringen, A.C., Edelen, D.G.B.: On non‐local elasticity, Int. J. Eng. Sci.10(3), 233‐248 (1972). https://doi.org/10.1016/0020‐7225(72)90039‐0 · Zbl 0247.73005 · doi:10.1016/0020‐7225(72)90039‐0
[33] Dhaliwal, R.S., Singh, A., Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India, 1980.
[34] Kaushal, S., Kumar, R., Miglani, A.: Response of Frequency domain in generalized thermoelasticity with two temperatures. J. Eng. Phys. Thermophys.83(5), 1013‐1021 (2010). https://doi.org/10.1007/s10891‐010‐0433‐0 · doi:10.1007/s10891‐010‐0433‐0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.