×

Thermoelastic interactions on temperature-rate-dependent two-temperature thermoelasticity in an infinite medium subjected to a line heat source. (English) Zbl 1495.80006

Summary: Thermoelastic interactions in a linear, isotropic and homogeneous unbounded solid resulting from a continuous line heat source are investigated utilizing modified temperature-rate-dependent two-temperature thermoelasticity theory (MTRDTT, recently proposed by O. N. Shivay and S. Mukhopadhyay [“On the temperature-rate dependent two-temperature thermoelasticity theory”, J. Heat Transfer 142, No. 2, Article ID 4045241, 10 p. (2019; doi:10.1115/1.4045241)]. By incorporating the temperature-rate terms of thermodynamic temperature and conductive temperature, the two-temperature relation is modified in this theory. The problem is studied with the unified version of two-temperature relation to compare the results for displacement, temperatures and stresses in the MTRDTT model with the corresponding results of the two-temperature Green-Lindsay (TTGL) model. To solve the problem, Laplace and Hankel transforms are employed. Explicit expressions for these field variables are obtained for the short-time approximation case. Further, the computational tool is used to graphically depict the analytical findings and compare the results obtained from both models. Some important observations about these models are highlighted.

MSC:

80A19 Diffusive and convective heat and mass transfer, heat flow
74A15 Thermodynamics in solid mechanics
74B10 Linear elasticity with initial stresses
44A10 Laplace transform
74S99 Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] Biot, MA, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240-253 (1956) · Zbl 0071.41204 · doi:10.1063/1.1722351
[2] Lord, HW; Shulman, Y., A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299-309 (1967) · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[3] Green, AE; Laws, N., On the entropy production inequality, Arch. Ration. Mech. Anal., 45, 1, 47-53 (1972) · doi:10.1007/BF00253395
[4] Green, AE; Lindsay, KA, Thermoelasticity, J. Elast., 2, 1, 1-7 (1972) · Zbl 0775.73063 · doi:10.1007/BF00045689
[5] Green, AE; Naghdi, PM, Thermoelasticity without energy dissipation, J. Elast., 31, 189-208 (1993) · Zbl 0784.73009 · doi:10.1007/BF00044969
[6] Green, AE; Naghdi, PM, On undamped heat waves in an elastic solid, J. Therm. Stress., 15, 253-264 (1992) · doi:10.1080/01495739208946136
[7] Green, AE; Naghdi, PM, A Re-examination of the basic postulates of thermomechanics, Proc. R. Soc. A Math. Phys. Eng. Sci., 432, 171-194 (1991) · Zbl 0726.73004
[8] Chen, PJ; Gurtin, ME, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19, 614-627 (1968) · Zbl 0159.15103 · doi:10.1007/BF01594969
[9] Chen, PJ; Gurtin, ME; Williams, WO, A note on non-simple heat conduction, Z. Angew. Math. Phys., 19, 969-970 (1968) · doi:10.1007/BF01602278
[10] Chen, PJ; Gurtin, ME; Williams, WO, On the thermodynamics of non-simple elastic materials with two temperatures, Z. Angew. Math. Phys., 20, 107-112 (1969) · Zbl 0164.26104 · doi:10.1007/BF01591120
[11] Youssef, HM, Theory of two-temperature-generalized thermoelasticity, IMA J. Appl. Math., 71, 383-390 (2006) · Zbl 1115.74019 · doi:10.1093/imamat/hxh101
[12] Youssef, HM; El-Bary, AA, Theory of hyperbolic two-temperature generalized thermoelasticity, Mater. Phys. Mech., 40, 158-171 (2018)
[13] Shivay, ON; Mukhopadhyay, S., On the temperature-rate dependent two-temperature thermoelasticity theory, J. Heat Transf., 142, 4045241 (2019) · doi:10.1115/1.4045241
[14] Warren, WE; Chen, PJ, Wave propagation in the two-temperature theory of thermoelasticity, Acta Mech., 16, 21-33 (1973) · Zbl 0251.73011 · doi:10.1007/BF01177123
[15] Puri, P.; Jordan, PM, On the propagation of harmonic plane waves under the two-temperature theory, Int. J. Eng. Sci., 44, 1113-1126 (2006) · Zbl 1213.74161 · doi:10.1016/j.ijengsci.2006.07.002
[16] Youssef, HM; Al-Lehaibi, EA, State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem, Int. J. Solids Struct., 44, 1550-1562 (2007) · Zbl 1127.74012 · doi:10.1016/j.ijsolstr.2006.06.035
[17] Kumar, R.; Mukhopadhyay, S., Effects of thermal relaxation time on plane wave propagation under two-temperature thermoelasticity, Int. J. Eng. Sci., 48, 128-139 (2010) · Zbl 1213.74158 · doi:10.1016/j.ijengsci.2009.07.001
[18] Magana, A.; Quintanilla, R., Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories, Math. Mech. Solids, 14, 622-634 (2009) · Zbl 1197.74031 · doi:10.1177/1081286507087653
[19] Kumar, R.; Kumar, R.; Mukhopadhyay, S., An investigation on thermoelastic interactions under two-temperature thermoelasticity with two relaxation parameters, Math. Mech. Solids, 21, 725-736 (2016) · Zbl 1370.74046 · doi:10.1177/1081286514536429
[20] Kumar, R.; Kant, S.; Mukhopadhyay, S., An in-depth investigation on plane harmonic waves under two-temperature thermoelasticity with two relaxation parameters, Math. Mech. Solids, 22, 191-209 (2017) · Zbl 1371.74141 · doi:10.1177/1081286515578495
[21] Miranville, A.; Quintanilla, R., On the spatial behavior in two-temperature generalized thermoelastic theories, Z. Angew. Math. Phys., 68, 110 (2017) · Zbl 1378.35299 · doi:10.1007/s00033-017-0857-x
[22] Jangid, K.; Mukhopadhyay, S., Variational and reciprocal principles on the temperature-rate dependent two-temperature thermoelasticity theory, J. Therm. Stress., 43, 816-828 (2020) · doi:10.1080/01495739.2020.1753607
[23] Kumar, R.; Prasad, R.; Kumar, R., Thermoelastic interactions on hyperbolic two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity, Eur. J. Mech. Solids, 82 (2020) · Zbl 1477.74025 · doi:10.1016/j.euromechsol.2020.104007
[24] Fernández, JR; Quintanilla, R., Uniqueness and exponential instability in a new two-temperature thermoelastic theory, AIMS Math., 6, 5440-5451 (2021) · Zbl 1484.35355 · doi:10.3934/math.2021321
[25] Shivay, ON; Mukhopadhyay, S., Thermomechanical interactions due to mode-I crack under modified temperature-rate dependent two-temperature thermoelasticity theory, Waves Random Complex Med. (2022) · doi:10.1080/17455030.2022.2090640
[26] Sherief, HH; Anwar, MN, Problem in generalized thermoelasticity, J. Therm. Stress., 9, 165-181 (1986) · doi:10.1080/01495738608961895
[27] Chandrasekharaiah, DS; Murthy, HN, Temperature-rate-dependent thermoelastic interactions due to a line heat source, Acta Mech., 89, 1-12 (1991) · Zbl 0825.73039 · doi:10.1007/BF01171242
[28] Ezzat, MA, Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions, Int. J. Eng. Sci., 33, 2011-2020 (1995) · Zbl 0899.73071 · doi:10.1016/0020-7225(95)00050-8
[29] Dhaliwal, RS; Majumdar, SR; Wang, J., Thermoelastic waves in an infinite solid caused by a line heat source, Int. J. Math. Sci., 20, 323-334 (1997) · Zbl 0880.73016 · doi:10.1155/S0161171297000434
[30] Chandrasekharaiah, D.; Srinath, K., Thermoelastic interactions without energy dissipation due to a line heat source, Acta Mech., 128, 243-251 (1998) · Zbl 0906.73019 · doi:10.1007/BF01251894
[31] Prasad, R.; Kumar, R.; Mukhopadhyay, S., Effects of phase lags on wave propagation in an infinite solid due to a continuous line heat source, Acta Mech., 217, 243-256 (2011) · Zbl 1398.74173 · doi:10.1007/s00707-010-0389-3
[32] Oberhettinger, F.; Badii, L., Tables of Laplace Transforms (1973), New York: Springer, New York · Zbl 0285.65079 · doi:10.1007/978-3-642-65645-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.