×

Analysis of the magneto-thermoelastic vibrations of rotating Euler-Bernoulli nanobeams using the nonlocal elasticity model. (English) Zbl 1518.74029

Summary: This paper introduces size-dependent modeling and investigation of the transverse vibrational behavior of rotating thermoelastic nanobeams by means of nonlocal elasticity theory. In the formulation, a model of thermal conductivity with two-phase delays (DPL) was utilized. By incorporating the interactions between phonons and electrons, this model took into account microstructural influences. Also, we have employed the state-space approach and Laplace transform approach to solve the governing equations, which were developed in the context of the nonlocal Eringen model. The nanobeam material is subjected to a changeable temperature field produced by the graphene tape attached to the nanobeam and connected to an electrical source. In addition, the nanobeam material is fully encompassed by an axially applied magnetic field. It has been revealed how coefficients such as the rotational angular velocity of the nanobeam, nonlocal coefficient, voltage, electrical resistance, and applied magnetic field influence its behavior.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F15 Electromagnetic effects in solid mechanics
74F05 Thermal effects in solid mechanics

References:

[1] Malik, M.; Das, D., Free vibration analysis of rotating nano-beams for flap-wise, chord-wise and axial modes based on Eringen’s nonlocal theory, Int. J. Mech. Sci., 179 (2020) · doi:10.1016/j.ijmecsci.2020.105655
[2] Kim, K.; Xu, X.; Guo, J.; Fan, D. L., Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks, Nat. Commun., 5 (2014) · doi:10.1038/ncomms4632
[3] Li, J.; Wang, X.; Zhao, L.; Gao, X.; Zhao, Y.; Zhou, R., Rotation motion of designed nano-turbine, Sci. Rep., 4, 1 (2014) · doi:10.1038/srep05846
[4] Khaniki, H. B., Vibration analysis of rotating nanobeam systems using Eringen’s two-phase local/nonlocal model, Physica E, Low-Dimens. Syst. Nanostruct., 99, 310-319 (2018) · doi:10.1016/j.physe.2018.02.008
[5] Ganguli, R.; Panchore, V., The Rotating Beam Problem in Helicopter Dynamics (2018), Berlin: Springer, Berlin · doi:10.1007/978-981-10-6098-4
[6] Yao, M. H.; Chen, Y. P.; Zhang, W., Nonlinear vibrations of blade with varying rotating speed, Nonlinear Dyn., 68, 4, 487-504 (2012) · Zbl 1348.74160 · doi:10.1007/s11071-011-0231-z
[7] Ebrahimi, F.; Barati, M. R.; Haghi, P., Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory, J. Vib. Control, 24, 17, 3809-3818 (2018) · doi:10.1177/1077546317711537
[8] Narendar, S.; Gopalakrishnan, S., Nonlocal wave propagation in rotating nanotube, Results Phys., 1, 17-25 (2011) · doi:10.1016/j.rinp.2011.06.002
[9] Hoshina, M.; Yokoshi, N.; Ishihara, H., Nanoscale rotational optical manipulation, Opt. Express, 28, 14980-14994 (2020) · doi:10.1364/OE.393379
[10] Nan, F.; Li, X.; Zhang, S.; Ng, J.; Yan, Z., Creating stable trapping force and switchable optical torque with tunable phase of light, Sci. Adv., 8 (2022) · doi:10.1126/sciadv.add6664
[11] Abouelregal, A. E.; Mohammad-Sedighi, H.; Faghidian, S. A.; Shirazi, A. H., Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load, Facta Univ. Ser.: Mech. Eng., 19, 4, 633-656 (2021)
[12] Narendar, S., Mathematical modelling of rotating single-walled carbon nanotubes used in nanoscale rotational actuators, Def. Sci. J., 61, 4, 317-324 (2011) · doi:10.14429/dsj.61.1091
[13] Rahmani, A.; Faroughi, S.; Friswell, M. I., The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory, Mech. Syst. Signal Process., 144 (2020) · Zbl 1481.74375 · doi:10.1016/j.ymssp.2020.106854
[14] Tho, N. C.; Thanh, N. T.; Tho, T. D.; Van Minh, P.; Hoa, L. K., Modelling of the flexoelectric effect on rotating nanobeams with geometrical imperfection, J. Braz. Soc. Mech. Sci. Eng., 43, 11 (2021) · doi:10.1007/s40430-021-03189-w
[15] Mindlin, R.; Tiersten, H., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 415-448 (1962) · Zbl 0112.38906 · doi:10.1007/BF00253946
[16] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 10, 2731-2743 (2002) · Zbl 1037.74006 · doi:10.1016/S0020-7683(02)00152-X
[17] Lam, D. C.C.; Yang, F.; Chong, A. C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 8, 1477-1508 (2003) · Zbl 1077.74517 · doi:10.1016/S0022-5096(03)00053-X
[18] Fan, F.; Xu, Y.; Sahmani, S.; Safaei, B., Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach, Comput. Methods Appl. Mech. Eng., 372 (2020) · Zbl 1506.74181 · doi:10.1016/j.cma.2020.113400
[19] Eringen, A. C., Non-local Continuum Field Theories, 71-176 (2002), Berlin: Springer, Berlin · Zbl 1023.74003
[20] Eringen, A. C., Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., 10, 5, 425-435 (1972) · Zbl 0241.73005 · doi:10.1016/0020-7225(72)90050-X
[21] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 9, 4703-4710 (1983) · doi:10.1063/1.332803
[22] Jha, B. K.; Oyelade, I. O., The role of dual-phase-lag (DPL) heat conduction model on transient free convection flow in a vertical channel, Partial Differ. Equ. Appl. Math., 5 (2022) · doi:10.1016/j.padiff.2022.100266
[23] Cattaneo, C., A form of heat conduction equation which eliminates the paradox of instantaneous propagation, C. R. Acad. Sci., 247, 431-433 (1958) · Zbl 1339.35135
[24] Vernotte, P., Paradox in the continuous theory of heat equation, C. R. Acad. Sci., 246, 3154-3155 (1958) · Zbl 1341.35086
[25] Lord, H. W.; Shulman, Y., A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 5, 299-309 (1967) · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[26] Green, A. E.; Lindsay, K. A., Thermoelasticity, J. Elast., 2, 1, 1-7 (1972) · Zbl 0775.73063 · doi:10.1007/BF00045689
[27] Green, A. E.; Naghdi, P. M., On undamped heat waves in an elastic solid, J. Therm. Stresses, 15, 2, 253-264 (1992) · doi:10.1080/01495739208946136
[28] Green, A. E.; Naghdi, P. M., Thermoelasticity without energy dissipation, J. Elast., 31, 3, 189-208 (1993) · Zbl 0784.73009 · doi:10.1007/BF00044969
[29] Tzou, D. Y., A unified field approach for heat conduction from macro-to micro-scales, J. Heat Transf., 117, 1, 8-16 (1995) · doi:10.1115/1.2822329
[30] Tzou, D. Y., The generalized lagging response in small-scale and high-rate heating, Int. J. Heat Mass Transf., 38, 17, 3231-3240 (1995) · doi:10.1016/0017-9310(95)00052-B
[31] Tzou, D. Y., Experimental support for the lagging behavior in heat propagation, J. Thermophys. Heat Transf., 9, 4, 686-693 (1995) · doi:10.2514/3.725
[32] Kraus, J., Electromagnetics (1984), New York: McGraw-Hill, New York
[33] Wang, H.; Dong, K.; Men, F.; Yan, Y. J.; Wang, X., Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix, Appl. Math. Model., 34, 4, 878-889 (2010) · Zbl 1185.82077 · doi:10.1016/j.apm.2009.07.005
[34] Narendar, S.; Gupta, S. S.; Gopalakrishnan, S., Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory, Appl. Math. Model., 36, 9, 4529-4538 (2012) · Zbl 1252.74016 · doi:10.1016/j.apm.2011.11.073
[35] Pradhan, S. C.; Murmu, T., Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever, Physica E, Low-Dimens. Syst. Nanostruct., 42, 7, 1944-1949 (2010) · doi:10.1016/j.physe.2010.03.004
[36] Babaei, A.; Yang, C. X., Vibration analysis of rotating rods based on the nonlocal elasticity theory and coupled displacement field, Microsyst. Technol., 25, 1077-1085 (2019) · doi:10.1007/s00542-018-4047-3
[37] Abouelregal, A. E.; Mohammed, F. A.; Benhamed, M.; Zakria, A.; Ahmed, I.-E., Vibrations of axially excited rotating micro-beams heated by a high-intensity laser in light of a thermo-elastic model including the memory-dependent derivative, Math. Comput. Simul., 199, 81-99 (2022) · Zbl 1540.74030 · doi:10.1016/j.matcom.2022.03.017
[38] Abouelregal, A. E.; Alesemi, M., Fractional Moore-Gibson-Thompson heat transfer model with nonlocal and nonsingular kernels of a rotating viscoelastic annular cylinder with changeable thermal properties, PLoS ONE, 17, 6 (2022) · doi:10.1371/journal.pone.0269862
[39] Sosa, H. A.; Bahar, L. Y., The state space approach to thermoelasticity: a reformulation and an alternate approach, J. Therm. Stresses, 16, 4, 421-436 (1993) · doi:10.1080/01495739308946238
[40] Abd El-Latief, A. M., New state-space approach and its application in thermoelasticity, J. Therm. Stresses, 40, 2, 135-144 (2016) · doi:10.1080/01495739.2016.1235963
[41] Bahar, L. Y.; Hetnarski, R. B., State space approach to thermoelasticity, J. Therm. Stresses, 1, 1, 135-145 (1978) · doi:10.1080/01495737808926936
[42] Sherief, H. H., State space approach to thermoelasticity with two relaxation times, Int. J. Eng. Sci., 31, 8, 1177-1189 (1993) · Zbl 0774.73015 · doi:10.1016/0020-7225(93)90091-8
[43] Alahmadi, A. N.M., Vibration of a thermoelastic microbeam due to the thermoelectrical effect of a strip of graphene, Math. Probl. Eng., 2022 (2022) · doi:10.1155/2022/4935623
[44] Voršič, Ž.; Maruša, R.; Pihler, J., New method for calculating the heating of the conductor, Energies, 12, 14 (2019) · doi:10.3390/en12142769
[45] Abate, J., Numerical inversion of Laplace transforms of probability distributions, ORSA J. Comput., 7, 36-43 (1995) · Zbl 0821.65085 · doi:10.1287/ijoc.7.1.36
[46] Crump, K. S., Numerical inversion of Laplace transforms using a Fourier series approximation, J. ACM, 23, 89-96 (1976) · Zbl 0315.65074 · doi:10.1145/321921.321931
[47] Luschi, L.; Pieri, F., An analytical model for the determination of resonance frequencies of perforated beams, J. Micromech. Microeng., 24, 5 (2014) · doi:10.1088/0960-1317/24/5/055004
[48] Sudak, L. J., Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, J. Appl. Phys., 94, 11, 7281-7287 (2003) · doi:10.1063/1.1625437
[49] Abouelregal, A. E.; Tiwari, R., The thermoelastic vibration of nano-sized rotating beams with variable thermal properties under axial load via memory-dependent heat conduction, Meccanica, 57, 2001-2025 (2022) · Zbl 1525.74076 · doi:10.1007/s11012-022-01543-3
[50] Abouelregal, A. E.; Khalil, K. M.; Mohammed, W. W.; Atta, D., Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation, AIMS Math., 7, 4, 6128-6152 (2022) · doi:10.3934/math.2022341
[51] Jahangir, A.; Ali, H.; Mahmood, A.; Zaigham Zia, Q. M., Study on reflected waves through visco-elastic solid rotating with fixed angular frequency, Waves Random Complex Media (2023) · doi:10.1080/17455030.2023.2171503
[52] Fang, J.; Yin, B.; Zhang, X.; Yang, B., Size-dependent vibration of functionally graded rotating nanobeams with different boundary conditions based on nonlocal elasticity theory, Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., 236, 6, 2756-2774 (2022) · doi:10.1177/09544062211038029
[53] Atta, D.; Abouelregal, A. E.; Alsharari, F., Thermoelastic analysis of functionally graded nanobeams via fractional heat transfer model with nonlocal kernels, Mathematics, 10 (2022) · doi:10.3390/math10244718
[54] Yan, X., Free vibration analysis of a rotating nanobeam using integral form of Eringen’s nonlocal theory and element-free Galerkin method, Appl. Phys. A, 128 (2022) · doi:10.1007/s00339-022-05714-7
[55] Jin-Tao, M.; Tian-Hu, H., Investigation on the dynamic responses of a generalized thermoelastic problem with variable properties and nonlocal effect, J. Therm. Stresses, 42, 4, 426-439 (2019) · doi:10.1080/01495739.2018.1520617
[56] Abouelregal, A. E.; Marin, M., The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory, Symmetry, 12, 8 (2020) · doi:10.3390/sym12081276
[57] Scutaru, M. L.; Vlase, S., New analytical method based on dynamic response of planar mechanical elastic systems, Bound. Value Probl., 2020, 1 (2020) · Zbl 1499.70006 · doi:10.1186/s13661-020-01401-9
[58] Marin, M.; Ellahi, R., On the decay of exponential type for the solutions in a dipolar elastic body, J. Taibah Univ. Sci., 14, 1, 534-540 (2020) · doi:10.1080/16583655.2020.1751963
[59] Abo-Dahab, S. M., Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam, Symmetry, 12, 7 (2020) · doi:10.3390/sym12071094
[60] Alzahrani, F.; Hobiny, A., An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities, Symmetry, 12, 5 (2020) · doi:10.3390/sym12050848
[61] Rachid, K.; Bourouina, H.; Yahiaoui, R.; Bounekhla, M., Magnetic field effect on nonlocal resonance frequencies of nanobeam with periodic square holes network, Physica E, Low-Dimens. Syst. Nanostruct., 105, 83-89 (2019) · doi:10.1016/j.physe.2018.05.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.