×

New analytical method based on dynamic response of planar mechanical elastic systems. (English) Zbl 1499.70006

Summary: An important stage in an analysis of a multibody system (MBS) with elastic elements by the finite element method is the assembly of the equations of motion for the whole system. This assembly, which seems like an empirical process as it is applied and described, is in fact the result of applying variational formulations to the whole considered system, putting together all the finite elements used in modeling and introducing constraints between the elements, which are, in general, nonholonomic. In the paper, we apply the method of Maggi’s equations to realize the assembly of the equations of motion for a planar mechanical systems using finite two-dimensional elements. This presents some advantages in the case of mechanical systems with nonholonomic liaisons.

MSC:

70E55 Dynamics of multibody systems
74B05 Classical linear elasticity

References:

[1] Erdman, A. G.; Sandor, G. N.; Oakberg, A., A general method for kineto-elastodynamic analysis and synthesis of mechanisms, J. Eng. Ind. ASME Trans., 94, 4, 1193 (1972) · doi:10.1115/1.3428335
[2] Vlase, S.; Marin, M.; Öchsner, A.; Scutaru, M. L., Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system, Contin. Mech. Thermodyn. (2019) · Zbl 1442.70006 · doi:10.1007/s00161-018-0722-y
[3] Vlase, S., Dynamical response of a multibody system with flexible elements with a general three-dimensional motion, Rom. J. Phys., 57, 3-4, 676-693 (2012)
[4] Vlase, S.; Dănăşel, C.; Scutaru, M. L.; Mihălcică, M., Finite element analysis of a two-dimensional linear elastic systems with a plane “rigid motion”, Rom. J. Phys., 59, 5-6, 476-487 (2014)
[5] Piras, G.; Cleghorn, W. L.; Mills, J. K., Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links, Mech. Mach. Theory, 40, 7, 849-862 (2005) · Zbl 1077.70005 · doi:10.1016/j.mechmachtheory.2004.12.007
[6] Craciun, E. M.; Baesu, E.; Soos, E., General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: application to Mode III fracture propagation, IMA J. Appl. Math., 70, 39-52 (2004) · Zbl 1073.74025 · doi:10.1093/imamat/hxh060
[7] Ursu-Fisher, N., Elements of Analitical Mechanics (2015), Cluj-Napoca: House of Science Book Press, Cluj-Napoca
[8] Negrean, I.; Kacso, K.; Schonstein, C.; Duca, A., Mechanics. Theory and Applications (2012), Cluj-Napoca: UTPRESS, Cluj-Napoca
[9] Mirtaheri, S. M.; Zohoor, H., The explicit Gibbs-Appell equations of motion for rigid-body constrained mechanical system, RSI International Conference on Robotics and Mechatronics ICRoM, 304-309 (2018)
[10] Korayem, M. H.; Dehkordi, S. F., Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs-Appell formulation, Appl. Math. Model., 65, 443-463 (2019) · Zbl 1481.70045 · doi:10.1016/j.apm.2018.08.035
[11] Shafei, A. M.; Shafei, H. R., A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment, Multibody Syst. Dyn., 38, 1, 21-42 (2017) · Zbl 1372.70027 · doi:10.1007/s11044-015-9496-1
[12] Marin, M.; Ellahi, R.; Chirilă, A., On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids, Carpath. J. Math., 33, 2, 219-232 (2017) · Zbl 1399.74007
[13] Itu, C.; Oechsner, A.; Vlase, S.; Marin, M., Improved rigidity of composite circular plates through radial ribs, Proc. Inst. Mech. Eng. Part L, J. Mater. Des. Appl., 233, 8, 1585-1593 (2019)
[14] Negrean, I.; Crişan, A.-D., Synthesis on the acceleration energies in the advanced mechanics of the multibody systems, Symmetry, 11, 9 (2019) · doi:10.3390/sym11091077
[15] Negrean, I.; Crişan, A.-D.; Vlase, S., A new approach in analytical dynamics of mechanical systems, Symmetry, 12, 1 (2020) · doi:10.3390/sym12010095
[16] Marin, M.; Vlase, S.; Ellahi, R.; Bhatti, M. M., On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure, Symmetry, 11, 7 (2019) · doi:10.3390/sym11070863
[17] Vlase, S.; Negrean, I.; Marin, M.; Scutaru, M. L., Energy of accelerations used to obtain the motion equations of a three-dimensional finite element, Symmetry, 12, 2 (2020) · doi:10.3390/sym12020321
[18] Haug, E. J., Extension of Maggi and Kane equations to holonomic dynamic systems, J. Comput. Nonlinear Dyn., 13, 12 (2018) · doi:10.1115/1.4041579
[19] Marin, M.; Craciun, E. M.; Pop, P., Considerations on mixed initial-boundary value problems for micropolar porous bodies, Dyn. Syst. Appl., 25, 1-2, 175-196 (2016) · Zbl 1430.74010
[20] Zhang, Q.; Radulescu, V. D., Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl., 118, 159-203 (2018) · Zbl 1404.35191 · doi:10.1016/j.matpur.2018.06.015
[21] Ladyzynska-Kozdras, E., Application of the Maggi equations to mathematical modeling of a robotic underwater vehicle as an object with superimposed non-holonomic constraints treated as control laws, Solid State Phenom., 180, 152-159 (2012) · doi:10.4028/www.scientific.net/SSP.180.152
[22] De Jalon, J. G.; Callejo, A.; Hidalgo, A. F., Efficient solution of Maggi’s equations, J. Comput. Nonlinear Dyn., 7, 2 (2012) · doi:10.1115/1.4005238
[23] Kumar, S.; Pandey, P.; Das, S.; Craciun, E.-M., Numerical solution of two dimensional reaction-diffusion equation using operational matrix method based on Genocchi polynomial. Part I: Genocchi polynomial and operational matrix, Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci., 20, 4, 393-399 (2019) · Zbl 1463.35502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.