×

High order conservative LDG-IMEX methods for the degenerate nonlinear non-equilibrium radiation diffusion problems. (English) Zbl 07833833

Summary: In this paper, we develop a class of high-order conservative methods for simulating non-equilibrium radiation diffusion problems. Numerically, this system poses significant challenges due to strong nonlinearity within the stiff source terms and the degeneracy of nonlinear diffusion terms. Explicit methods require impractically small time steps, while implicit methods, which offer stability, come with the challenge to guarantee the convergence of nonlinear iterative solvers. To overcome these challenges, we propose a predictor-corrector approach and design proper implicit-explicit time discretizations. In the predictor step, the system is reformulated into a nonconservative form and linear diffusion terms are introduced as a penalization to mitigate strong nonlinearities. We then employ a Picard iteration to secure convergence in handling the nonlinear aspects. The corrector step guarantees the conservation of total energy, which is vital for accurately simulating the speeds of propagating sharp fronts in this system.
For spatial approximations, we utilize local discontinuous Galerkin finite element methods, coupled with positive-preserving and TVB limiters. We validate the orders of accuracy, conservation properties, and suitability of using large time steps for our proposed methods, through numerical experiments conducted on one- and two-dimensional spatial problems. In both homogeneous and heterogeneous non-equilibrium radiation diffusion problems, we attain a time stability condition comparable to that of a fully implicit time discretization. Such an approach is also applicable to many other reaction-diffusion systems.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Kxx Parabolic equations and parabolic systems
86Axx Geophysics

References:

[1] Arbogast, T.; Huang, C.-S.; Zhao, X., Finite volume WENO schemes for nonlinear parabolic problems with degenerate diffusion on non-uniform meshes, J. Comput. Phys., 399, Article 108921 pp., 2019 · Zbl 1453.65243
[2] Ascher, U. M.; Ruuth, S. J.; Wetton, B. T., Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32, 797-823, 1995 · Zbl 0841.65081
[3] Ascher, U. M.; Ruuth, S. J.; Spiteri, R. J., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 2-3, 151-167, 1997 · Zbl 0896.65061
[4] Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences, 1994, SIAM · Zbl 0815.15016
[5] Bessemoulin-Chatard, Marianne; Filbet, Francis, A finite volume scheme for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 34, 5, B559-B583, 2012 · Zbl 1273.65114
[6] Bingjing, S.; Olson, G. L., Benchmark results for the non-equilibrium Marshak diffusion problem, J. Quant. Spectrosc. Radiat. Transf., 56, 3, 337-351, 1996
[7] Boscarino, S.; Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35, 1, A22-A51, 2013 · Zbl 1264.65150
[8] Bowers, R. L.; Wilson, J. R., Numerical Modeling in Applied Physics and Astrophysics, 1991, Jones and Bartlett Publishers, Inc. · Zbl 0786.76001
[9] Brown, P. N.; Shumaker, D. E.; Woodward, C. S., Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration, J. Comput. Phys., 204, 2, 760-783, 2005 · Zbl 1060.82001
[10] Castillo, P.; Cockburn, B.; Schötzau, D.; Schwab, C., Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comput., 71, 238, 455-478, 2002 · Zbl 0997.65111
[11] Cockburn, B.; Shu TVB, C.-W., Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comput., 52, 186, 411-435, 1989 · Zbl 0662.65083
[12] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463, 1998 · Zbl 0927.65118
[13] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261, 2001 · Zbl 1065.76135
[14] Epstein, Irving R.; Pojman, John A., An Introduction to Nonlinear Chemical Dynamics, 1998, Oxford Academic
[15] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 221, 73-85, 1998 · Zbl 0897.65058
[16] Huang, Z.; Li, Y., Monotone finite point method for non-equilibrium radiation diffusion equations, BIT Numer. Math., 56, 2, 659-679, 2016 · Zbl 1341.65041
[17] Jang, J.; Li, F.; Qiu, J.-M.; Xiong, T., Analysis of asymptotic preserving DG-IMEX schemes for linear kinetic transport equations in a diffusive scaling, SIAM J. Numer. Anal., 52, 4, 2048-2072, 2014 · Zbl 1307.65132
[18] Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; Warren, J.; Heinonen, O. G., Benchmark problems for numerical implementations of phase field models, Comput. Mater. Sci., 126, 139-151, 2017
[19] Kang, K. S., \( P_1\) nonconforming finite element multigrid method for radiation transport, SIAM J. Sci. Comput., 25, 2, 369-384, 2003 · Zbl 1042.65073
[20] Ketcheson, D. I.; Macdonald, C. B.; Gottlieb, S., Optimal implicit strong stability preserving Runge-Kutta methods, Appl. Numer. Math., 59, 2, 373-392, 2009 · Zbl 1157.65046
[21] Knoll, D. A.; Chacon, L.; Margolin, L. G.; Mousseau, V. A., On balanced approximations for time integration of multiple time scale systems, J. Comput. Phys., 185, 2, 583-611, 2003 · Zbl 1047.76074
[22] Knoll, D. A.; Lowrie, R. B.; Morel, J. E., Numerical analysis of time integration errors for nonequilibrium radiation diffusion, J. Comput. Phys., 226, 2, 1332-1347, 2007 · Zbl 1126.78007
[23] Knoll, D. A.; Rider, W. J.; Olson, G. L., An efficient nonlinear solution method for non-equilibrium radiation diffusion, J. Quant. Spectrosc. Radiat. Transf., 63, 1, 15-29, 1999
[24] Knoll, D. A.; Rider, W. J.; Olson, G. L., Nonlinear convergence, accuracy, and time step control in nonequilibrium radiation diffusion, J. Quant. Spectrosc. Radiat. Transf., 70, 1, 25-36, 2001
[25] Lai, X.; Sheng, Z.; Yuan, G., Monotone finite volume scheme for three dimensional diffusion equation on tetrahedral meshes, Commun. Comput. Phys., 21, 1, 162-181, 2017 · Zbl 1388.65081
[26] Larsen, E. W.; Pomraning, G. C.; Badham, V. C., Asymptotic analysis of radiative transfer problems, J. Quant. Spectrosc. Radiat. Transf., 29, 285-310, 1983
[27] Liu, Shu; Liu, Siting; Osher, Stanley; Li, Wuchen, A first-order computational algorithm for reaction-diffusion type equations via primal-dual hybrid gradient method, J. Comput. Phys., 500, Article 112753 pp., 2024 · Zbl 1533.65152
[28] Liu, Yuanyuan; Shu, Chi-Wang; Zhang, Mengping, High order finite difference WENO schemes for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 33, 2, 939-965, 2011 · Zbl 1227.65074
[29] Lowrie, R. B., A comparison of implicit time integration methods for nonlinear relaxation and diffusion, J. Comput. Phys., 196, 2, 566-590, 2004 · Zbl 1053.65080
[30] Marshak, R. E., Effect of radiation on shock wave behavior, Phys. Fluids, 1, 1, 24-29, 1958 · Zbl 0081.41601
[31] Mousseau, V. A.; Knoll, D. A., New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion, J. Comput. Phys., 190, 1, 42-51, 2003 · Zbl 1027.65129
[32] Mousseau, V. A.; Knoll, D. A., Temporal accuracy of the nonequilibrium radiation diffusion equations applied to two-dimensional multimaterial simulations, Nucl. Sci. Eng., 154, 2, 174-189, 2006
[33] Mousseau, V. A.; Knoll, D. A.; Rider, W. J., Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion, J. Comput. Phys., 160, 2, 743-765, 2000 · Zbl 0949.65092
[34] Murray, J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, 2003, Springer: Springer New York · Zbl 1006.92002
[35] Ober, C. C.; Shadid, J. N., Studies on the accuracy of time-integration methods for the radiation-diffusion equations, J. Comput. Phys., 195, 2, 743-772, 2004 · Zbl 1053.65082
[36] Peterson, D. L.; Bowers, R. L.; Brownell, J. H.; Greene, A. E.; McLenithan, K. D.; Oliphant, T. A.; Roderick, N. F.; Scannapieco, A. J., Two-dimensional modeling of magnetically driven Rayleigh-Taylor instabilities in cylindrical Z pinches, Phys. Plasmas, 3, 1, 368-381, 1996
[37] Pomraning, G. C., The non-equilibrium Marshak wave problem, J. Quant. Spectrosc. Radiat. Transf., 21, 3, 249-261, 1979
[38] Robinson, A. C.; Garasi, C. J., Three-dimensional z-pinch wire array modeling with ALEGRA-HEDP, Comput. Phys. Commun., 164, 1-3, 408-413, 2004
[39] Saad, Y.; Schultz GMRES, M. H., A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869, 1986 · Zbl 0599.65018
[40] Sheng, Z.; Yue, J.; Yuan, G., Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes, SIAM J. Sci. Comput., 31, 4, 2915-2934, 2009 · Zbl 1195.65115
[41] Shi, Y.; Yong, H.; Zhai, C.; Qi, J.; Song, P., A functional expansion tally method for gray radiative transfer equations in implicit Monte Carlo, J. Comput. Theor. Transp., 47, 7, 581-598, 2018 · Zbl 1481.82033
[42] Smoller, J., Shock Waves and Reaction—Diffusion Equations, vol. 258, 2012, Springer Science & Business Media
[43] Spitzer, L.; Härm, R., Transport phenomena in a completely ionized gas, Phys. Rev., 89, 5, 977, 1953 · Zbl 0050.23505
[44] Su, S.; Wu, J., A vertex-centered and positivity-preserving finite volume scheme for two-dimensional three-temperature radiation diffusion equations on general polygonal meshes, Numer. Math. Theory Methods Appl., 13, 1, 220-252, 2020 · Zbl 1463.65268
[45] Tang, M.; Wang, L.; Zhang, X., Accurate front capturing asymptotic preserving scheme for nonlinear gray radiative transfer equation, SIAM J. Sci. Comput., 43, 3, B759-B783, 2021 · Zbl 1469.65141
[46] Tang, M.; Zhang, X., Semi-implicit front capturing schemes for the degenerate nonlinear radiative diffusion equation, J. Comput. Phys., 436, Article 110290 pp., 2021 · Zbl 07513852
[47] Turner, N. J.; Stone, J. M., A module for radiation hydrodynamic calculations with ZEUS-2D using flux-limited diffusion, Astrophys. J. Suppl. Ser., 135, 1, 95, 2001
[48] Wang, H.; Shu, C.-W.; Zhang, Q., Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems, SIAM J. Numer. Anal., 53, 1, 206-227, 2015 · Zbl 1327.65179
[49] Wang, H.; Zhang, Q.; Wang, S.; Shu, C.-W., Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems, Sci. China Math., 63, 1, 183-204, 2020 · Zbl 1434.65196
[50] Winslow, A. M., Multifrequency-gray method for radiation diffusion with Compton scattering, J. Comput. Phys., 117, 2, 262-273, 1995 · Zbl 0832.65145
[51] Xiong, T.; Sun, W.; Shi, Y.; Song, P., High order asymptotic preserving discontinuous Galerkin methods for gray radiative transfer equations, J. Comput. Phys., Article 111308 pp., 2022 · Zbl 07536794
[52] Xu, Y.; Shu, C.-W., Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Commun. Comput. Phys., 7, 1, 1, 2010 · Zbl 1364.65205
[53] Yan, J.; Shu, C.-W., Local discontinuous Galerkin methods for partial differential equations with higher order derivatives, J. Sci. Comput., 17, 1, 27-47, 2002 · Zbl 1003.65115
[54] Yang, X.; Huang, W.; Qiu, J., A moving mesh finite difference method for equilibrium radiation diffusion equations, J. Comput. Phys., 298, 661-677, 2015 · Zbl 1349.65352
[55] Yang, X.; Huang, W.; Qiu, J., Moving mesh finite difference solution of non-equilibrium radiation diffusion equations, Numer. Algorithms, 82, 4, 1409-1440, 2019 · Zbl 1434.65170
[56] Yu, Y.; Chen, X.; Yuan, G., A finite volume scheme preserving maximum principle for the system of radiation diffusion equations with three-temperature, SIAM J. Sci. Comput., 41, 1, B93-B113, 2019 · Zbl 1426.65137
[57] Yuan, G.; Hang, X.; Sheng, Z.; Yue, J., Progress in numerical methods for radiation diffusion equations, Chin. J. Comput. Phys., 26, 4, 475, 2009
[58] Zhang, Peng; Xiong, Tao, High order implicit finite difference schemes with a semi-implicit WENO reconstruction for nonlinear degenerate parabolic equations, J. Comput. Phys., 467, Article 111442 pp., 2022 · Zbl 07568546
[59] Zhang, Q.; Wu, Z.-L., Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method, J. Sci. Comput., 38, 2, 127-148, 2009 · Zbl 1203.65193
[60] Zhang, R.; Yu, X.; Cui, X.; Feng, T., Discontinuous finite element method for 1D non-equilibrium radiation diffusion equations, Chin. J. Comput. Phys., 29, 5, 641, 2012
[61] Zhang, Rongpei; Yu, Xijun; Zhu, Jiang; Loula, Abimael F. D., Direct discontinuous Galerkin method for nonlinear reaction-diffusion systems in pattern formation, Appl. Math. Model., 38, 1612-1621, 2014 · Zbl 1427.65272
[62] Zhao, X.; Chen, Y.; Gao, Y.; Yu, C.; Li, Y., Finite volume element methods for nonequilibrium radiation diffusion equations, Int. J. Numer. Methods Fluids, 73, 12, 1059-1080, 2013 · Zbl 1455.65154
[63] Zhu, Jianfeng; Zhang, Yong-Tao; Newman, Stuart A.; Alber, Mark, Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology, J. Sci. Comput., 40, 391-418, 2009 · Zbl 1203.65194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.