×

High order asymptotic preserving discontinuous Galerkin methods for gray radiative transfer equations. (English) Zbl 07536794

Summary: In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the works in [S. Boscarino et al., SIAM J. Sci. Comput. 36, No. 2, 377–395 (2014; Zbl 1426.76455); Z. Peng et al., J. Comput. Phys. 415, Article ID 109485, 35 p. (2020; Zbl 1440.65147)], we propose to penalize the nonlinear GRTEs under the micro-macro decomposition framework by adding a weighted linear diffusive term. A hyperbolic, namely \(\Delta t = \mathcal{O}(h)\) in the transport regime where \(\Delta t\) and \(h\) are the time step and mesh size respectively, and unconditional stability instead of parabolic time step restriction \(\Delta t = \mathcal{O}(h^2)\) in the diffusive regime are obtained, which are also free from the photon mean free path. We further employ a Picard iteration with a predictor-corrector procedure, to decouple the resulting global nonlinear system to a linear system with local nonlinear algebraic equations within each outer iterative loop. For the resulting scheme, only an implicit system for the macroscopic variable needs to be solved, while the microscopic variable can be updated explicitly. Besides, the nonlinear implicit system is decoupled to a linear positive definite system followed by nonlinear algebraic equations due to the Picard iteration. Namely, high dimension, implicit treatment and nonlinearity are all decoupled. Our scheme is shown to be AP and asymptotically accurate (AA). Numerical tests for one and two spatial dimensional problems are performed to demonstrate that our scheme is high order accurate, effective and efficient.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
65Nxx Numerical methods for partial differential equations, boundary value problems

References:

[1] Adams, M. L., Discontinuous finite element transport solutions in the thick diffusive problems, Nucl. Sci. Eng., 137, 298-333 (2001)
[2] Andreev, Y. S.; Kozmanov, M. Y.; Rachilov, Y. B., The maximum principle for a system of energy and nonstationary radiative transfer equations, Zh. Vychisl. Mat. Mat. Fiz., 23, 152-159 (1983)
[3] Ascher, U.; Ruuth, S.; Spiteri, R., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151-167 (1997) · Zbl 0896.65061
[4] Azmy, Y.; Sartori, E., Nuclear Computational Science-A Century in Review (2010), Springer
[5] Bardos, C.; Golse, F.; Perthame, B., The Rosseland approximation for the radiative transfer equations, Commun. Pure Appl. Math., 40, 691-721 (1987) · Zbl 0654.65095
[6] Boscarino, S.; Lefloch, P. G.; Russo, G., High-order asymptotic-preserving methods for fully nonlinear relaxation problems, SIAM J. Sci. Comput., 36, A377-A395 (2014) · Zbl 1426.76455
[7] Boscarino, S.; Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35, A22-A51 (2013) · Zbl 1264.65150
[8] Brunner, T. A., Forms of approximate radiation transport (2002), Sandia National Laboratories, Technical Report, SAND2002-1778
[9] Camminady, T.; Frank, M.; Küpper, K.; Kusch, J., Ray effect mitigation for the discrete ordinates method through quadrature rotation, J. Comput. Phys., 382, 105-123 (2019) · Zbl 1451.65116
[10] Chacón, L.; Chen, G.; Knoll, D.; Newman, C.; Park, H.; Taitano, W.; Willert, J.; Womeldorff, G., Multiscale high-order/low-order (HOLO) algorithms and applications, J. Comput. Phys., 330, 21-45 (2017) · Zbl 1380.65316
[11] Chandrasekhar, S., Radiative Transfer (1960), Dover Publications · Zbl 0037.43201
[12] Cheng, J.; Shu, C.-W.; Song, P., High order conservative Lagrangian schemes for one-dimensional radiation hydrodynamics equations in the equilibrium-diffusion limit, J. Comput. Phys., 421, Article 109724 pp. (2020) · Zbl 1537.76082
[13] Cockburn, B.; Singler, J.-R.; Zhang, Y., Interpolatory HDG method for parabolic semilinear PDEs, J. Sci. Comput., 1-24 (2018)
[14] Crestetto, A.; Crouseilles, N.; Dimarco, G.; Lemou, M., Asymptotically complexity diminishing schemes (ACDS) for kinetic equations in the diffusive scaling, J. Comput. Phys., 394, 243-262 (2019) · Zbl 1452.65004
[15] Densmore, J., A modified implicit Monte Carlo method for time-dependent radiative transfer with adaptive material coupling, J. Comput. Phys., 228, 5669-5686 (2009) · Zbl 1168.65305
[16] Densmore, J., Asymptotic analysis of the spatial discretization of radiation absorption and re-emission in implicit Monte Carlo, J. Comput. Phys., 230, 1116-1133 (2011) · Zbl 1217.80028
[17] Douglas, J.; Dupont, T., The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures, Math. Comput., 29, 360-389 (1975) · Zbl 0311.65060
[18] Du, J.; Chung, E., An adaptive staggered discontinuous Galerkin method for the steady state convection-diffusion equation, J. Sci. Comput., 77, 1490-1518 (2018) · Zbl 1407.65286
[19] Fleck, J.; Cummings, J., An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport, J. Comput. Phys., 8, 313-342 (1971) · Zbl 0229.65087
[20] Frank, M.; Kusch, J.; Camminady, T.; Hauck, C. D., Ray effect mitigation for the discrete ordinates method using artificial scattering, Nucl. Sci. Eng., 194, 971-988 (2020)
[21] Gentile, N., Implicit Monte Carlo diffusion-an acceleration method for Monte Carlo time-dependent radiative transfer simulations, J. Comput. Phys., 172, 543-571 (2001) · Zbl 0986.65148
[22] Golse, F.; Salvarani, F., The Rosseland limit of the radiative transfer equation (2008) · Zbl 1183.78012
[23] Guermond, J.-L.; Kanschat, G., Asymptotic analysis of upwind discontinuous Galerkin approximation of the radiative transport equation in the diffusive limit, SIAM J. Numer. Anal., 48, 53-78 (2010) · Zbl 1218.65128
[24] Guermond, J.-L.; Popov, B.; Ragusa, J., Positive and asymptotic preserving approximation of the radiative transfer equation, SIAM J. Numer. Anal., 58, 519-540 (2020) · Zbl 1447.65142
[25] Hammer, H.; Park, H.; Chacón, L., A multi-dimensional, moment-accelerated deterministic particle method for time-dependent, multi-frequency thermal radiative transfer problems, J. Comput. Phys., 386, 653-674 (2019) · Zbl 1452.65287
[26] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, vol. 54 (2008), Springer Verlag: Springer Verlag New York · Zbl 1134.65068
[27] Jang, J.; Li, F.; Qiu, J.-M.; Xiong, T., Analysis of asymptotic preserving DG-IMEX schemes for linear kinetic transport equations in a diffusive scaling, SIAM J. Numer. Anal., 52, 1497-2206 (2014)
[28] Jang, J.; Li, F.; Qiu, J.-M.; Xiong, T., High order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling, J. Comput. Phys., 281, 199-224 (2015) · Zbl 1351.76062
[29] Jin, S., Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21, 441-454 (1999) · Zbl 0947.82008
[30] Jin, S., Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, (Lecture Notes for Summer School on Methods and Models of Kinetic Theory (M&MKT). Lecture Notes for Summer School on Methods and Models of Kinetic Theory (M&MKT), Porto Ercole, Grosseto, Italy (2010))
[31] Jin, S.; Levermore, C., The discrete-ordinate method in diffusive regimes, Transp. Theory Stat. Phys., 20, 413-439 (1991) · Zbl 0760.65125
[32] Jin, S.; Levermore, C., Fully discrete numerical transfer in diffusive regimes, Transp. Theory Stat. Phys., 22, 739-791 (1993) · Zbl 0818.65141
[33] Jin, S.; Pareschi, L.; Toscani, G., Uniformly accurate diffusive relaxation schemes for multiscale transport equations, SIAM J. Numer. Anal., 38, 913-936 (2000) · Zbl 0976.65091
[34] Klar, A., An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit, SIAM J. Numer. Anal., 35, 1073-1094 (1998) · Zbl 0918.65091
[35] Laiu, M. P.; Frank, M.; Hauck, C. D., A positive asymptotic-preserving scheme for linear kinetic transport equations, SIAM J. Sci. Comput., 41, A1500-A1526 (2019) · Zbl 1447.65025
[36] Larsen, E.; Pomraning, G.; Badham, V., Asymptotic analysis of radiative transfer problems, J. Quant. Spectrosc. Radiat. Transf., 29, 285-310 (1983)
[37] Larsen, E. W.; Kumar, A.; Morel, J. E., Properties of the implicitly time-differenced equations of thermal radiation transport, J. Comput. Phys., 238, 82-96 (2013) · Zbl 1286.65115
[38] Larsen, E. W.; Morel, J., Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II, J. Comput. Phys., 83, 212-236 (1989) · Zbl 0684.65118
[39] Larsen, E. W.; Morel, J.; Miller, W. F., Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes, J. Comput. Phys., 69, 283-324 (1987) · Zbl 0627.65146
[40] Lathrop, K. D., Ray effects in discrete ordinates equations, Nucl. Sci. Eng., 32, 357-369 (1968)
[41] Lemou, M.; Mieussens, L., A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31, 334-368 (2008) · Zbl 1187.82110
[42] Li, W.; Liu, C.; Zhu, Y.; Zhang, J.; Xu, K., Unified gas-kinetic wave-particle methods III: multiscale photon transport, J. Comput. Phys., 408, Article 109280 pp. (2020) · Zbl 1484.76058
[43] Maginot, P. G.; Ragusa, J. C.; Morel, J. E., High-order solution methods for grey discrete ordinates thermal radiative transfer, J. Comput. Phys., 327, 719-746 (2016) · Zbl 1422.65262
[44] McClarren, R.; Lowrie, R., The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws, J. Comput. Phys., 227, 9711-9726 (2008) · Zbl 1154.65077
[45] McClarren, R. G.; Hauck, C. D., Robust and accurate filtered spherical harmonics expansions for radiative transfer, J. Comput. Phys., 229, 5597-5614 (2010) · Zbl 1193.82043
[46] Mercier, B., Application of accretive operators theory to the radiative transfer equations, SIAM J. Math. Anal., 18, 393-408 (1987) · Zbl 0654.47036
[47] Mieussens, L., On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models, J. Comput. Phys., 253, 139-156 (2013) · Zbl 1349.76787
[48] Modest, M., Radiative Heat Transfer (2013), Academic Press
[49] Morel, J. E.; Adams, B. T.; Noh, T.; McGhee, J. M.; Evans, T. M.; Urbatsch, T. J., Spatially discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys., 214, 12-40 (2006) · Zbl 1089.65139
[50] Morel, J. E.; Wareing, T. A.; Lowrie, L. B.; Parsons, D. K., Analysis of Ray-effect mitigation techniques, Nucl. Sci. Eng., 144, 1-22 (2003)
[51] Morel, J. E.; Wareing, T. A.; Smith, K., A linear-discontinuous spatially differencing scheme for Sn radiative transfer calculations, J. Comput. Phys., 128, 445-462 (1996) · Zbl 0864.65095
[52] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25, 129-155 (2005) · Zbl 1203.65111
[53] Park, H., Toward asymptotic diffusion limit preserving high-order, low-order method, Nucl. Sci. Eng., 194, 952-970 (2020)
[54] Peng, Z.; Bokil, V. A.; Cheng, Y.; Li, F., Asymptotic and positivity preserving methods for Kerr-Debye model with Lorentz dispersion in one dimension, J. Comput. Phys., 402, Article 109101 pp. (2020) · Zbl 1453.78010
[55] Peng, Z.; Cheng, Y.; Qiu, J.-M.; Li, F., Stability-enhanced AP IMEX-LDG schemes for linear kinetic transport equations under a diffusive scaling, J. Comput. Phys., 415, Article 109485 pp. (2020) · Zbl 1440.65147
[56] Peng, Z.; Cheng, Y.; Qiu, J.-M.; Li, F., Stability-enhanced AP IMEX1-LDG method: energy-based stability and rigorous AP property, SIAM J. Numer. Anal., 59, 925-954 (2021) · Zbl 1468.65147
[57] Peng, Z.; Li, F., Asymptotic preserving IMEX-DG-S schemes for linear kinetic transport equations based on Schur complement, SIAM J. Sci. Comput., 43, A1194-A1220 (2021) · Zbl 1484.65232
[58] Pomraning, G. C., The Equations of Radiation Hydrodynamics (1973), Pergamon Press
[59] Qamar, S.; Ashraf, W., Application of central schemes for solving radiation hydrodynamical models, Comput. Phys. Commun., 184, 1349-1363 (2013) · Zbl 1305.76068
[60] Reed, W.; Hill, T., Triangular mesh methods for the Neutron transport equation (1973), Los Alamos Scientific Laboratory: Los Alamos Scientific Laboratory Los Alamos, NM, Tech. Report
[61] Shi, Y.; Song, P.; Sun, W., An asymptotic preserving unified gas kinetic particle method for radiative transfer equations, J. Comput. Phys., 420, Article 109687 pp. (2020) · Zbl 07506616
[62] Shi, Y.; Sun, W.; Song, P., A continuous source tilting scheme for radiative transfer equations in implicit Monte Carlo, J. Comput. Theor. Transp., 1-26 (2020) · Zbl 07476664
[63] Shi, Y.; Yong, H.; Zhai, C.; Qi, J.; Song, P., A functional expansion tally method for gray radiative transfer equations in implicit Monte Carlo, J. Comput. Theor. Transp., 47, 581-598 (2018) · Zbl 1481.82033
[64] Sun, W.; Jiang, S.; Xu, K., An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations, J. Comput. Phys., 285, 265-279 (2015) · Zbl 1351.76186
[65] Sun, W.; Jiang, S.; Xu, K., A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh, J. Comput. Phys., 351, 455-472 (2017) · Zbl 1375.76137
[66] Sun, W.; Jiang, S.; Xu, K.; Li, S., An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations, J. Comput. Phys., 302, 222-238 (2015) · Zbl 1349.76735
[67] Sun, Z.; Hauck, C. D., Low-memory, discrete ordinates, discontinuous Galerkin methods for radiative transport, SIAM J. Sci. Comput., 42, B869-B893 (2020) · Zbl 1452.65360
[68] Tang, M.; Wang, L.; Zhang, X., Accurate front capturing asymptotic preserving scheme for nonlinear gray radiative transfer equation, SIAM J. Sci. Comput., 43, B759-B783 (2021) · Zbl 1469.65141
[69] Wang, H.; Zhang, Q.; Wang, S.; Shu, C.-W., Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems, Sci. China Math., 63, 183-204 (2020) · Zbl 1434.65196
[70] Xu, X.; Sun, W.; Jiang, S., An asymptotic preserving angular finite element based unified gas kinetic scheme for gray radiative transfer equations, J. Quant. Spectrosc. Radiat. Transf., 243, Article 106808 pp. (2020)
[71] Yuan, D.; Cheng, J.; Shu, C.-W., High order positivity-preserving discontinuous Galerkin schemes for radiative transfer equations, SIAM J. Sci. Comput., 38, A2987-A3019 (2016) · Zbl 1351.65105
[72] G. Zhang, H. Zhu, T. Xiong, Uniformly unconditionally stable asymptotic-preserving finite difference schemes for linear transport kinetic equations in the diffusive scaling, 2022, submitted for publication. Available from requirement from the corresponding author.
[73] Zhang, M.; Cheng, J.; Qiu, J., High order positivity-preserving discontinuous Galerkin schemes for radiative transfer equations on triangular meshes, J. Comput. Phys., 397, Article 108811 pp. (2019) · Zbl 1453.65348
[74] Zhang, M.; Huang, W.; Qiu, J., High-order conservative positivity-preserving DG-interpolation for deforming meshes and application to moving mesh DG simulation of radiative transfer, SIAM J. Sci. Comput., 42, A3109-A3135 (2020) · Zbl 1454.65122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.