×

Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. (English) Zbl 1203.65111

Summary: We consider new implicit-explicit (IMEX) Runge-Kutta methods for hyperbolic systems of conservation laws with stiff relaxation terms. The explicit part is treated by a strong-stability-preserving (SSP) scheme, and the implicit part is treated by an L-stable diagonally implicit Runge-Kutta method (DIRK). The schemes proposed are asymptotic preserving (AP) in the zero relaxation limit. High accuracy in space is obtained by Weighted Essentially Non Oscillatory (WENO) reconstruction. After a description of the mathematical properties of the schemes, several applications will be presented.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
82D25 Statistical mechanics of crystals
35L65 Hyperbolic conservation laws
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

RODAS

References:

[1] Arora, M.; Roe, P. L., Issues and strategies for hyperbolic problems with stiff source terms, 139-154 (1998), Dordrecht: Kluwer Academic Publication, Dordrecht · Zbl 0958.76076
[2] Ascher, U.; Petzold, L., Computer Methods for Ordinary Differential Equations, and Differential Algebraic Equations (1998), Philadelphia: SIAM, Philadelphia · Zbl 0908.65055
[3] Ascher, U.; Ruuth, S.; Spiteri, R. J., Implicit-explicit Runge-Kutta methods for time dependent partial differential equations, Appl. Numer. Math., 25, 151-167 (1997) · Zbl 0896.65061 · doi:10.1016/S0168-9274(97)00056-1
[4] Ascher, U.; Ruuth, S.; Wetton, B., Implicit-explicit methods for time dependent PDE’s, SIAM J. Numer. Anal., 32, 797-823 (1995) · Zbl 0841.65081 · doi:10.1137/0732037
[5] Aw, A.; Rascle, M., Resurrection of second order models of traffic flow?, SIAM. J. Appl. Math., 60, 916-938 (2000) · Zbl 0957.35086 · doi:10.1137/S0036139997332099
[6] Aw, A.; Klar, A.; Materne, T.; Rascle, M., Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63, 259-278 (2002) · Zbl 1023.35063 · doi:10.1137/S0036139900380955
[7] Caflisch, R. E.; Jin, S.; Russo, G., Uniformly accurate schemes for hyperbolic systems with relaxation, SIAM J. Numer. Anal., 34, 246-281 (1997) · Zbl 0868.35070 · doi:10.1137/S0036142994268090
[8] Chen, G. Q.; Levermore, D.; Liu, T. P., Hyperbolic conservations laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47, 787-830 (1994) · Zbl 0806.35112 · doi:10.1002/cpa.3160470602
[9] Dia, B. O.; Schatzman, M., Commutateur de certains semi-groupes holomorphes et applications aux directions alternées, Math. Modelling Num. Anal., 30, 343-383 (1996) · Zbl 0853.47024
[10] Gottlieb, S.; Shu, C. -W., Total variation diminishing Runge-Kutta schemes, Math. Comp., 67, 73-85 (1998) · Zbl 0897.65058 · doi:10.1090/S0025-5718-98-00913-2
[11] Gottlieb, S.; Shu, C. -W.; Tadmor, E., Strong-stability-preserving high order time discretization methods, SIAM Review, 43, 89-112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[12] Hairer, E., Order conditions for numerical methods for partitioned ordinary differential equations, Numerische Mathematik, 36, 431-445 (1981) · Zbl 0462.65049 · doi:10.1007/BF01395956
[13] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations, Vol.1 Nonstiff problems (1987), Boston: Springer US, Boston · Zbl 0638.65058
[14] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations, Vol.2 Stiff and Differential-algebraic Problems (1987), Boston: Springer US, Boston
[15] Jahnke, T., and Lubich, C. (2000). Error bounds for exponential operator splitting,BIT. 735-744. · Zbl 0972.65061
[16] Jenkins, J.; Richman, M., Grad’s 13-moment system for a dense gas of inelastic spheres, Arch. Rat. Mech. Anal., 87, 355-377 (1985) · Zbl 0617.76085 · doi:10.1007/BF00250919
[17] Jin, S., Runge-Kutta methods for hyperbolic systems with stiff relaxation terms, J. Comput. Phys., 122, 51-67 (1995) · Zbl 0840.65098 · doi:10.1006/jcph.1995.1196
[18] Jin, S.; Xin, Z. P., The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math., 48, 3, 235-276 (1995) · Zbl 0826.65078 · doi:10.1002/cpa.3160480303
[19] Kennedy, C. A.; Carpenter, M. H., Additive Runge Kutta schemes for corvection-diffusion-reaction equations, Appl. Numer. Math., 44, 139-181 (2003) · Zbl 1013.65103 · doi:10.1016/S0168-9274(02)00138-1
[20] LeVeque, R. J., Numerical Methods for Conservation Laws (1992), Basel: Birkhauser Verlag, Basel · Zbl 0847.65053
[21] Liotta, S. F.; Romano, V.; Russo, G., Central schemes for balance laws of relaxation type, SIAM J. Numer. Anal., 38, 1337-1356 (2000) · Zbl 0982.65093 · doi:10.1137/S0036142999363061
[22] Liu, T. P., Hyperbolic conservation laws with relaxation, Comm. Math. Phys., 108, 153-175 (1987) · Zbl 0633.35049 · doi:10.1007/BF01210707
[23] Marquina, A., and Serna, S. (2004).Capturing Shock Waves in Inelastic Granular Gases, UCLA-CAM Report, 04-04. · Zbl 1138.76378
[24] Pareschi, L., Central differencing based numerical schemes for hyperbolic conservation laws with stiff relaxation terms, SIAM J. Num. Anal., 39, 1395-1417 (2001) · Zbl 1020.65048 · doi:10.1137/S0036142900375906
[25] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations, Adv. Theory Comput Math., 3, 269-289 (2001) · Zbl 1018.65093
[26] Pareschi, L.; Russo, G., High order asymptotically strong-stability-preserving methods for hyperbolic systems with stiff relaxation, Proceedings HYP2002, Pasadena USA, 241-255 (2003), Berlin: Springer, Berlin · Zbl 1064.65105
[27] Pareschi, L., and Russo, G. (2004). Stability analysis of implicit-explicit Runge-Kutta schemes. preprint.
[28] Qiu, J.; Shu, C.-W., On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes, J. Comput. Phys., 183, 1, 187-209 (2002) · Zbl 1018.65106 · doi:10.1006/jcph.2002.7191
[29] Shu, C.-W., Total variation diminishing time discretizations, SIAM J. Sci. Stat. Comput., 9, 1073-1084 (1988) · Zbl 0662.65081 · doi:10.1137/0909073
[30] Shu, C.-W., Essentially Non Oscillatory and Weighted Essentially Non Oscillatory Schemes for Hyperbolic Conservation Laws, Advanced numerical approximation of nonlinear hyperbolic equations, 1697, 325-432 (2000) · Zbl 0927.65111 · doi:10.1007/BFb0096355
[31] Shu, C.-W.; Osher, S., Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[32] Spiteri, R. J.; Ruuth, S. J., A new class of optimal strong-stability-preserving time discretization methods, SIAM. J. Num. Anal., 40, 2, 469-491 (2002) · Zbl 1020.65064 · doi:10.1137/S0036142901389025
[33] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 505-517 (1968) · Zbl 0184.38503 · doi:10.1137/0705041
[34] Toscani, G., Kinetic and hydrodinamic models of nearly elastic granular flows.Monatsch. Math.142(1-2), 179-192. · Zbl 1136.82366
[35] Whitham, G. B., Linear and Nonlinear waves (1974), Boston: Wiley, Boston · Zbl 0373.76001
[36] Zhong, X., Additive semi-implicit Runge-Kutta methods for computing high speed nonequilibrium reactive flows, J. Comp. Phys., 128, 19-31 (1996) · Zbl 0861.76057 · doi:10.1006/jcph.1996.0193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.