×

High order implicit finite difference schemes with a semi-implicit WENO reconstruction for nonlinear degenerate parabolic equations. (English) Zbl 07568546

Summary: In this paper, we develop implicit finite difference schemes with a semi-implicit weighted essentially non-oscillatory (WENO) reconstruction for nonlinear degenerate parabolic equations. Such degenerate equations would exist finite speed front propagation which is similar to discontinuous solutions for hyperbolic equations. We propose to use the finite difference WENO scheme with an implicit time discretization, to avoid the parabolic time step condition from an explicit time discretization, namely \(\Delta t = \mathcal{O}(\Delta x^2)\) where \(\Delta x\) is the mesh size. We further simplify the resulting nonlinear system by employing a semi-implicit WENO reconstruction, that is, nonlinear weights are treated explicitly while keeping linear reconstructions of derivatives implicitly. The novelty is that the semi-implicit WENO reconstruction maintains the original high order accuracy both in space and in time, as well as unconditional stability as a fully implicit scheme, but the scheme is much simpler in complexity than the fully implicit one. Numerical experiments are performed to show the high order accuracy, large time step conditions with better efficiency as compared to an explicit scheme, and good performances for capturing front propagation.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Lxx Numerical methods for ordinary differential equations
35Kxx Parabolic equations and parabolic systems
Full Text: DOI

References:

[1] Arbogast, T.; Huang, C.-S.; Zhao, X., Finite volume WENO schemes for nonlinear parabolic problems with degenerate diffusion on non-uniform meshes, J. Comput. Phys., 399, Article 108921 pp. (2019) · Zbl 1453.65243
[2] Aronson, D. G., The porous medium equation, (Nonlinear Diffusion Problems. Nonlinear Diffusion Problems, Lecture Notes in Mathematics, vol. 1224 (1986), Springer-Verlad: Springer-Verlad Berlin), 1-46 · Zbl 0626.76097
[3] Barenblatt, G. I., On self-similar motions of a compressible fluid in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh., 16, 6, 679-698 (1952) · Zbl 0047.19204
[4] Bessemoulin-Chatard, M.; Filbet, F., A finite volume scheme for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 34, 5, B559-B583 (2012) · Zbl 1273.65114
[5] Black, F.; Scholes, M., The pricing of options and corporate liabilities, (World Scientific Reference on Contingent Claims Analysis in Corporate Finance: Volume 1: Foundations of CCA and Equity Valuation (2019), World Scientific), 3-21
[6] Buckley, S. E.; Leverett, M., Mechanism of fluid displacement in sands, Trans. Metall. Soc. AIME, 146, 01, 107-116 (1942)
[7] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118
[8] Cox, J. C.; Ross, S. A.; Rubinstein, M., Option pricing: a simplified approach, J. Financ. Econ., 7, 3, 229-263 (1979) · Zbl 1131.91333
[9] Ferracina, L.; Spijker, M., Strong stability of singly-diagonally-implicit Runge-Kutta methods, Appl. Numer. Math., 58, 11, 1675-1686 (2008) · Zbl 1153.65080
[10] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Eng., 197, 49-50, 4333-4352 (2008) · Zbl 1194.74524
[11] Gottlieb, S.; Ketcheson, D. I.; Shu, C.-W., Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations (2011), World Scientific · Zbl 1241.65064
[12] Gottlieb, S.; Mullen, J. S.; Ruuth, S. J., A fifth order flux implicit WENO method, J. Sci. Comput., 27, 1, 271-287 (2006) · Zbl 1107.76051
[13] Huang, F.; Shen, J.; Wu, K., Bound/positivity preserving and unconditionally stable schemes for a class of fourth order nonlinear equations, J. Comput. Phys., 460, Article 111177 pp. (2022) · Zbl 07525157
[14] Huang, F.; Shen, J.; Yang, Z., A highly efficient and accurate new scalar auxiliary variable approach for gradient flows, SIAM J. Sci. Comput., 42, 4, A2514-A2536 (2020) · Zbl 1451.65210
[15] Jiang, Y., High order finite difference multi-resolution WENO method for nonlinear degenerate parabolic equations, J. Sci. Comput., 86, 1, 1-20 (2021) · Zbl 1465.76068
[16] Johnson, C. R., Matrix Theory and Applications, Vol. 40 (1990), American Mathematical Society
[17] Ketcheson, D. I.; Macdonald, C. B.; Gottlieb, S., Optimal implicit strong stability preserving Runge-Kutta methods, Appl. Numer. Math., 59, 2, 373-392 (2009) · Zbl 1157.65046
[18] Liu, Y.; Shu, C.-W.; Zhang, M., High order finite difference WENO schemes for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 33, 2, 939-965 (2011) · Zbl 1227.65074
[19] Mihalas, D.; Mihalas, B., Foundations of Radiation Hydrodynamics (1984), Oxford University Press: Oxford University Press New York · Zbl 0651.76005
[20] Muskat, M., The flow of homogeneous fluids through porous media, Soil Sci., 46, 2, 169 (1938)
[21] North, G. R.; Howard, L.; Pollard, D.; Wielicki, B., Variational formulation of Budyko-Sellers climate models, J. Atmos. Sci., 36, 2, 255-259 (1979)
[22] Pirozzoli, S., On the spectral properties of shock-capturing schemes, J. Comput. Phys., 219, 489-497 (2006) · Zbl 1103.76040
[23] Pomraning, G., Equations of Radiation Hydrodynamics (1973), Pergamon Press: Pergamon Press Oxford
[24] Schimperna, G.; Pawłow, I., On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45, 1, 31-63 (2013) · Zbl 1276.35101
[25] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697 (1998), Springer: Springer Berlin), 325-432 · Zbl 0927.65111
[26] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[27] Tang, M.; Zhang, X., Semi-implicit front capturing schemes for the degenerate nonlinear radiative diffusion equation, J. Comput. Phys., 436, Article 110290 pp. (2021) · Zbl 07513852
[28] Wang, H.; Zhang, Q.; Wang, S.; Shu, C.-W., Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems, Sci. China Math., 63, 1, 183-204 (2020) · Zbl 1434.65196
[29] G. Zhang, H. Zhu, T. Xiong, Uniformly unconditionally stable asymptotic-preserving finite difference schemes for linear transport kinetic equations in the diffusive scaling, 2022, submitted for publication.
[30] Zhang, Q.; Wu, Z.-L., Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method, J. Sci. Comput., 38, 2, 127-148 (2009) · Zbl 1203.65193
[31] Zhang, Z.; Qiao, Z., An adaptive time-stepping strategy for the Cahn-Hilliard equation, Commun. Comput. Phys., 11, 4, 1261-1278 (2012) · Zbl 1388.65072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.