×

Indefinite Sturm-Liouville operators in polar form. (English) Zbl 07812575

Summary: We consider the indefinite Sturm-Liouville differential expression \[ \mathfrak{a}(f):= -\frac{1}{w}\left(\frac{1}{r}f'\right)', \] where \(\mathfrak{a}\) is defined on a finite or infinite open interval \(I\) with \(0\in I\) and the coefficients \(r\) and \(w\) are locally summable and such that \(r(x)\) and \((\mathrm{sgn}\, x) w(x)\) are positive a.e.on \(I\). With the differential expression \(\mathfrak{a}\) we associate a nonnegative self-adjoint operator \(A\) in the Krein space \(L^2_w (I)\) which is viewed as a coupling of symmetric operators in Hilbert spaces related to the intersections of \(I\) with the positive and the negative semi-axis. For the operator \(A\) we derive conditions in terms of the coefficients \(w\) and \(r\) for the existence of a Riesz basis consisting of generalized eigenfunctions of \(A\) and for the similarity of \(A\) to a self-adjoint operator in a Hilbert space \(L^2_{|w|}(I)\). These results are obtained as consequences of abstract results about the regularity of critical points of nonnegative self-adjoint operators in Krein spaces which are couplings of two symmetric operators acting in Hilbert spaces.

MSC:

47B50 Linear operators on spaces with an indefinite metric
34B24 Sturm-Liouville theory
46C20 Spaces with indefinite inner product (Kreĭn spaces, Pontryagin spaces, etc.)
47B25 Linear symmetric and selfadjoint operators (unbounded)
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators

References:

[1] Abasheeva, NL; Pyatkov, SG, Counterexamples in indefinite Sturm-Liouville problems, Siberian Adv. Math., 7, 4, 1-8 (1997) · Zbl 0942.34022
[2] Akhiezer, NI; Glazman, IM, Theory of Linear Operators in Hilbert Space, Two Volumes Bound as One (1993), New York: Dover Publications, New York
[3] Akopjan, R.V.: On the regularity at infinity of the spectral function of a \(J\)-nonnegative operator. Izv. Akad. Nauk Arm. SSR Ser. Mat. 15(5), 357-364 (1980). (in Russian) · Zbl 0447.47018
[4] Atkinson, F.V.: Some further estimates for the Titchmarsh-Weyl \(m\)-coefficient, preprint, University of Toronto (1985)
[5] Azizov, TY; Iokhvidov, IS, Linear Operators in Spaces with an Indefinite Metric (1990), New York: John Wiley & Sons, New York
[6] Beals, R., Indefinite Sturm-Liouville problems and half-range completeness, J. Differ. Equ., 56, 391-407 (1985) · Zbl 0512.34017 · doi:10.1016/0022-0396(85)90085-3
[7] Belna, CL, Cluster sets of arbitrary real functions: a partial survey, Real Anal. Exch., 1, 7-20 (1976) · Zbl 0386.26008 · doi:10.2307/44151086
[8] Bennewitz, C.: The HELP inequality in the regular case, General inequalities, 5 (Oberwolfach, 1986), 337-346, Internat. Schriftenreihe Numer. Math., 80, Birkhäuser, Basel (1987) · Zbl 0633.26007
[9] Bennewitz, C., Spectral asymptotics for Sturm-Liouville equations, Proc. Lond. Math. Soc., 59, 294-338 (1989) · Zbl 0681.34023 · doi:10.1112/plms/s3-59.2.294
[10] Binding, P., Ćurgus, B.: Riesz bases of root vectors of indefinite Sturm-Liouville problems with eigenparameter dependent boundary conditions. I. Operator theory and indefinite inner product spaces. In: Operator Theory: Advances and Applications, vol. 163, pp. 75-95. Birkhäuser, Basel (2006) · Zbl 1104.34058
[11] Binding, P.; Ćurgus, B., Riesz bases of root vectors of indefinite Sturm-Liouville problems with eigenparameter dependent boundary conditions. II, Integral Equ. Oper. Theory, 63, 4, 473-499 (2009) · Zbl 1210.34038 · doi:10.1007/s00020-009-1659-0
[12] Bingham, NH; Goldie, CM; Teugels, JL, Regular Variation (1989), Cambridge: Cambridge University Press, Cambridge · Zbl 0667.26003
[13] Bognár, J., Indefinite Inner Product Space (1974), Berlin: Springer-Verlag, Berlin · Zbl 0286.46028 · doi:10.1007/978-3-642-65567-8
[14] Buldygin, VV; Pavlenkov, VV, Karamata theorem for regularly log-periodic functions, Ukrainian Math. J., 64, 1635-1657 (2013) · Zbl 1278.26002 · doi:10.1007/s11253-013-0741-6
[15] Buldygin, V.V., Indlekofer, K.-H., Klesov, O.I., Steinebach, J.G.: Pseudo-Regularly Varying Functions and Generalized Renewal Processes. In: Probability Theory and Stochastic Modelling 91, Springer, Cham (2018) · Zbl 1422.60003
[16] Chisholm, R.S., Everitt, W.N.: On bounded integral operators in the space of integrable-square functions. Proc. R. Soc. Edinb. Sect. 69, 199-204 (1970/71) · Zbl 0259.47044
[17] Ćurgus, B., On the regularity of the critical point infinity of definitizable operators, Integral Equ. Oper. Theory, 8, 462-488 (1985) · Zbl 0572.47023 · doi:10.1007/BF01204699
[18] Ćurgus, B.; Derkach, V., Partially fundamentally reducible operators in Krein spaces, Integral Equ. Oper. Theory, 82, 469-518 (2015) · Zbl 1334.47039 · doi:10.1007/s00020-014-2204-3
[19] Ćurgus, B., Derkach, V., Trunk, C.: Indefinite Sturm-Liouville operators in polar form. (2021) arXiv:2101.00104v2 [math.SP]
[20] Ćurgus, B.; Fleige, A.; Kostenko, A., The Riesz basis property of an indefinite Sturm-Liouville problem with non-separated boundary conditions, Integral Equ. Oper. Theory, 77, 533-557 (2013) · Zbl 1292.34080 · doi:10.1007/s00020-013-2093-x
[21] Ćurgus, B.; Langer, H., A Krein space approach to symmetric ordinary differential operators with an indefinite weight function, J. Differ. Equ., 79, 31-61 (1989) · Zbl 0693.34020 · doi:10.1016/0022-0396(89)90112-5
[22] Ćurgus, B.; Najman, B., A Krein space approach to elliptic eigenvalue problems with indefinite weights, Differ. Integral Equ., 7, 1241-1252 (1994) · Zbl 0815.47044
[23] Ćurgus, B.; Najman, B., The operator \(({\rm sgn }\, x){d^2}/{dx^2}\) is similar to a self-adjoint operator in \(L^2({{\mathbb{R} }})\), Proc. Am. Math. Soc., 123, 1125-1128 (1995) · Zbl 0835.47021
[24] Ćurgus, B., Najman, B.: Positive differential operators in Krein space \(L^2(\mathbb{R})\). Recent developments in operator theory and its applications (Winnipeg, MB, 1994). In: Operator Theory: Advances and Applications, vol. 87, pp. 95-104. Birkhäuser, Basel (1996) · Zbl 0866.47030
[25] Ćurgus, B., Najman, B.: Positive differential operators in the Krein space \(L^2({\mathbb{R}}^n)\). Contributions to operator theory in spaces with an indefinite metric (Vienna, 1995). In: Operator Theory: Advances and Applications, vol. 106, pp. 113-129. Birkhäuser, Basel (1998) · Zbl 0921.47032
[26] Ćurgus, B.; Read, T., Discreteness of the spectrum of second-order differential operators and associated embedding theorems, J. Differ. Equ., 184, 526-548 (2002) · Zbl 1029.34070 · doi:10.1006/jdeq.2001.4152
[27] Daho, K.; Langer, H., Sturm-Liouville operators with an indefinite weight function, Proc. R. Soc. Edinb. Sect. A, 87, 161-191 (1977) · Zbl 0372.34018 · doi:10.1017/S0308210500009914
[28] Derkach, VA, On Weyl function and generalized resolvents of a Hermitian operator in a Krein space, Integral Equ. Oper. Theory, 23, 387-415 (1995) · Zbl 0837.47030 · doi:10.1007/BF01203914
[29] Derkach, VA, On generalized resolvents of Hermitian relations in Krein spaces, J. Math. Sci., 97, 4420-4460 (1999) · Zbl 0955.47022 · doi:10.1007/BF02366102
[30] Derkach, VA; Hassi, S.; Malamud, MM; de Snoo, HSV, Generalized resolvents of symmetric operators and admissibility, Methods Funct. Anal. Topol., 6, 3, 24-55 (2000) · Zbl 0973.47020
[31] Derkach, VA; Malamud, MM, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., 95, 1-95 (1991) · Zbl 0748.47004 · doi:10.1016/0022-1236(91)90024-Y
[32] Derkach, V., Malamud, M.: Extension Theory of Symmetric Operators and Boundary Value Problems, Transactions of Institute of Mathematics NAS of Ukraine, vol. 104, Kyiv (2017)
[33] Derkach, V., Strelnikov, D., Winkler, H.: On a class of integral systems. Complex Anal. Oper. Theory 15(6), Paper No. 103 (2021) · Zbl 1486.34068
[34] Derkach, V.; Trunk, C., Coupling of defnitizable operators in Krein spaces, Nanosystems Phys. Chem. Math., 8, 166-179 (2017) · doi:10.17586/2220-8054-2017-8-2-166-179
[35] Edmunds, D.; Evans, W., Spectral Theory and Differential Operators (1987), Oxford: Oxford University Press, Oxford · Zbl 0628.47017
[36] Evans, WD; Everitt, WN, HELP inequalities for limit-circle and regular problems, Proc. Roy. Soc. Lond. A, 432, 367-390 (1991) · Zbl 0724.34086 · doi:10.1098/rspa.1991.0022
[37] Everitt, WN, On an extension to an integro-differential inequality of Hardy, Littlewood and Polya, Proc. Roy. Soc. Edinb. A, 69, 295-333 (1972) · Zbl 0268.26013
[38] Faddeev, M.M., Shterenberg, R.G.: On the similarity of some singular differential operators to self-adjoint operators. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 270 (2000), Issled. po Linein. Oper. i Teor. Funkts. vol. 28, pp. 336-349, 370-371; translation in J. Math. Sci. (N. Y.) 115, 2279-2286 (2003) · Zbl 1025.47028
[39] Fleige, A., The turning point condition of Beals for indefinite Sturm-Liouville problems, Math. Nachr., 172, 109-112 (1995) · Zbl 0868.34022 · doi:10.1002/mana.19951720109
[40] Fleige, A., A counterexample to completeness properties for indefinite Sturm-Liouville problems, Math. Nachr., 190, 123-128 (1998) · Zbl 0898.34018 · doi:10.1002/mana.19981900106
[41] Fleige, A., The Riesz basis property of an indefinite Sturm-Liouville problem with a non odd weight function, Integral Equ. Oper. Theory, 60, 237-246 (2008) · Zbl 1147.34061 · doi:10.1007/s00020-007-1545-6
[42] Fleige, A.; Alpay, D., The critical point infinity associated with indefinite Sturm-Liouville problems, Operator Theory (2015), Basel: Springer, Basel · Zbl 1367.47047
[43] Fleige, A., Najman, B.: Perturbations of Krein spaces preserving the nonsingularity of the critical point infinit. Contributions to operatot theory in spaces with and idenfinite metric (Vienna, 1995), In: Operator Theory: Advances and Applications, vol. 106, pp. 147-155, Birkhäuser, Basel (1998) · Zbl 0921.47033
[44] Glazman, IM, On the theory of singular differential operators, Uspekhi Mat. Nauk, 5, 6, 102-135 (1950) · Zbl 0041.23101
[45] Gorbachuk, VI; Gorbachuk, ML, Boundary Value Problems for Operator Differential Equations (1991), Dordrecht: Kluwer Academic Publishers Group, Dordrecht · Zbl 0751.47025 · doi:10.1007/978-94-011-3714-0
[46] de Haan, L.: On Regular Variation and its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tracts, vol. 32. Mathematisch Centrum, Amsterdam (1970) · Zbl 0226.60039
[47] Hille, E., Non-oscillation theorems, Trans. Am. Math. Soc., 64, 234-252 (1948) · Zbl 0031.35402 · doi:10.1090/S0002-9947-1948-0027925-7
[48] Horning, A.; Townsend, A., FEAST for differential eigenvalue problems, SIAM J. Numer. Anal., 58, 1239-1262 (2020) · Zbl 1439.65088 · doi:10.1137/19M1238708
[49] Jonas, P., Compact perturbations of definitizable operators II, J. Oper. Theory, 8, 3-18 (1982) · Zbl 0565.47021
[50] Jonas, P.: Regularity criteria for critical points of definitizable operators. In: Operator Theory: Advances and Applications, vol. 14, pp. 179-195. Birkhäuser (1984) · Zbl 0556.47020
[51] Jonas, P.; Langer, H., Compact perturbations of definitizable operators, J. Oper. Theory, 2, 63-77 (1979) · Zbl 0478.47020
[52] Kac, IS; Krein, MG, Criteria for the discreteness of the spectrum of a singular string, (Russian), Izv. Vysš. Učebn. Zaved. Mat., 2, 136-153 (1958) · Zbl 1469.34111
[53] Kac, I.S.: A generalization of the asymptotic formula of V. A. Marčenko for the spectral functions of a second order boundary value problem. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 37, 422-436. English transl. in: Math USSR Izv. 7(1973), 424-436 (1973) · Zbl 0306.34024
[54] Kac, IS; Krein, MG, \(R\)-functions-analytic functions mapping the upper halfplane into itself, Am. Math. Soc. Transl. Ser. (2), 103, 1-18 (1974) · Zbl 0291.34016
[55] Kac, I.S., Krein, M.G.: On the spectral functions of the string, Supplement II to the Russian edition of F.V. Atkinson, Discrete and continuous boundary problems, Mir, Moscow: (Russian) (English translation: Am. Math. Soc. Transl. (2) 103(1974), 19-102 (1968) · Zbl 0291.34017
[56] Kalf, H., Remarks on some Dirichlet type results for semibounded Sturm-Liouville operators, Math. Ann., 210, 197-205 (1974) · Zbl 0297.34019 · doi:10.1007/BF01350583
[57] Karabash, IM, \(J\)-self-adjoint ordinary differential operators similar to self-adjoint operators, Methods Funct. Anal. Topol., 6, 22-49 (2000) · Zbl 0966.47027
[58] Karabash, I.M.: A functional model, eigenvalues, and finite singular critical points for indefinite Sturm-Liouville operators. In: Operator Theory: Advances and Applications, vol. 203, pp. 247-287 (2009). arXiv:0902.4900 · Zbl 1206.47040
[59] Karabash, IM; Kostenko, A., Indefinite Sturm-Liouville operators with the singular critical point zero, Proc. Roy. Soc. Edinb. Sect. A, 138, 801-820 (2008) · Zbl 1152.34018 · doi:10.1017/S0308210507000157
[60] Karabash, IM; Kostenko, A.; Malamud, MM, The similarity problem for \(J\)-nonnegative Sturm-Liouville operators, J. Differ. Equ., 246, 964-997 (2009) · Zbl 1165.34012 · doi:10.1016/j.jde.2008.04.021
[61] Karabash, IM; Malamud, MM, Indefinite Sturm-Liouville operators with finite zone potentials, Oper. Matrices, 1, 301-368 (2007) · Zbl 1146.47032 · doi:10.7153/oam-01-20
[62] Karabash, I.; Trunk, C., Spectral properties of singular Sturm-Liouville operators, Proc. Roy. Soc. Edinb. Sect. A, 139, 483-503 (2009) · Zbl 1189.34159 · doi:10.1017/S0308210507000686
[63] Karabash, IM; Kostenko, AS, On the similarity of operators of the type \({\rm sgn }\, x \bigl (-\frac{d^2}{dx^2} + c\delta \bigr )\) to a normal and a selfadjoint operator, Math. Notes, 74, 1-2, 127-131 (2003) · Zbl 1057.47050 · doi:10.1023/A:1025031519433
[64] Karamata, J., Sur un mode croissance régulière des fonctions, Mathematica (Cluj), 4, 38-53 (1930) · JFM 56.0907.01
[65] Kasahara, Y.: Spectral theory of generalized second order differential operators and its applications to Markov processes, Japan. J. Math. (N.S.) 1(1), 67-84 (1975/76) · Zbl 0348.60113
[66] Kochubei, AN, Extensions of \(J\)-symmetric operators (Russian), Teor. Funkciĭ Funkcional. Anal. i Prilozhen., 31, 74-80 (1979) · Zbl 0424.47025
[67] Korevaar, J., Tauberian Theory: A Century of Developments. Grundlehren der Mathematischen Wissenschaften (2004), Berlin: Springer, Berlin · Zbl 1056.40002 · doi:10.1007/978-3-662-10225-1
[68] Kostenko, A., The similarity problem for indefinite Sturm-Liouville operators with periodic coefficients, Oper. Matrices, 5, 707-722 (2011) · Zbl 1314.47058 · doi:10.7153/oam-05-50
[69] Kostenko, A., The similarity problem for indefinite Sturm-Liouville operators and the HELP inequality, Adv. Math., 246, 368-413 (2013) · Zbl 1287.34017 · doi:10.1016/j.aim.2013.05.025
[70] Kostenko, A., On a necessary aspect for the Riesz basis property for indefinite Sturm-Liouville problems, Math. Nachr., 287, 14-15, 1710-1732 (2014) · Zbl 1311.34056 · doi:10.1002/mana.201300104
[71] Langer, H.: Spectral functions of definitizable operators in Krein spaces. In: Functional analysis (Dubrovnik, 1981), Lecture Notes in Mathematics, vol. 948, pp. 1-46. Springer (1982) · Zbl 0511.47023
[72] Marčenko, VA, Some questions of the theory of one-dimensional linear differential operators of the second order. I. (Russian), Trudy Moskov. Mat. Obšč., 1, 327-420 (1952) · Zbl 0048.32501
[73] Maz’ja, VG, Sobolev Spaces (1985), Berlin Heidelberg New York: Springer-Verlag, Berlin Heidelberg New York · doi:10.1007/978-3-662-09922-3
[74] Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., 165, 207-226 (1972) · Zbl 0236.26016 · doi:10.1090/S0002-9947-1972-0293384-6
[75] Nehari, Z., Oscillation criteria for second-order linear differential equations, Trans. Am. Math. Soc., 85, 428-445 (1957) · Zbl 0078.07602 · doi:10.1090/S0002-9947-1957-0087816-8
[76] Oinarov, R.; Otelbaev, M., A criterion for a general Sturm-Liouville operator to have a discrete spectrum, Differ. Equ., 24, 402-408 (1988) · Zbl 0673.34027
[77] Parfenov, AI, On an embedding criterion for interpolation spaces and application to indefinite spectral problems, Sib. Math. J., 44, 638-644 (2003) · Zbl 1033.46059 · doi:10.1023/A:1024732422990
[78] Parfenov, AI, The Ćurgus condition in indefinite Sturm-Liouville problems, Sib. Adv. Math., 15, 68-103 (2005) · Zbl 1089.34025
[79] Protter, MH; Morrey, CB, A first Course in Real Analysis. Undergraduate Texts in Mathematics (1991), New York: Springer-Verlag, New York · doi:10.1007/978-1-4419-8744-0
[80] Pyatkov, S.G.: Interpolation of some function spaces and indefinite Sturm-Liouville problems. In: Differential and Integral Operators (Regensburg, 1995), Operator Theory: Advances and Applications, vol. 102, pp. 179-200. Birkhäuser, Basel (1998) · Zbl 0891.34026
[81] Pyatkov, SG, Indefinite elliptic spectral problems, Sib. Math. J., 39, 358-372 (1998) · Zbl 0943.34067 · doi:10.1007/BF02677520
[82] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. IV. Analysis of Operators (1978), New York: Academic Press, New York · Zbl 0401.47001
[83] Remling, C.; Scarbrough, K., The essential spectrum of canonical systems, J. Approx. Theory, 254 (2020) · Zbl 1457.34122 · doi:10.1016/j.jat.2020.105395
[84] Resnick, SI, Extreme Values, Regular Variation, and Point Processes (1987), New York: Springer-Verlag, New York · Zbl 0633.60001 · doi:10.1007/978-0-387-75953-1
[85] Romanov, R.; Woracek, H., Canonical systems with discrete spectrum, J. Funct. Anal., 278 (2020) · Zbl 1464.37056 · doi:10.1016/j.jfa.2019.108318
[86] Shmuljan, JL, Operator extension theory and spaces with indefinite metric Izv (Russian), Akad. Nauk SSSR Ser. Mat., 38, 896-908 (1974)
[87] Seneta, E., Regularly Varying Functions (1976), Berlin-New York: Springer-Verlag, Berlin-New York · Zbl 0324.26002 · doi:10.1007/BFb0079658
[88] Simon, B., Operator Theory. A Comprehensive Course in Analysis, Part 4 (2015), Providence: American Mathematical Society, Providence · Zbl 1334.00003
[89] Stone, MH, Linear Transformations in Hilbert Space and their Applications to Analysis, AMS Colloquium Publ (1979), New York: American Mathematical Society, New York
[90] Stuart, C.A.: The measure of non-compactness of some linear integral operators. Proc. Roy. Soc. Edinb. (A) 71, 167-179 (1972/73) · Zbl 0314.47029
[91] Thomson, B.S., Bruckner, J.B., Bruckner, A.M.: Elementary Real Analysis, 2nd ed. www.classicalrealanalysis.com (2008)
[92] Titchmarsh, EC, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I (1962), Oxford: Clarendon Press, Oxford · Zbl 0099.05201
[93] Veselić, K.: On spectral properties of a class of \(J\)-self-adjoint operators, I, II. Glasnik Mat. Ser. III 7(27), 229-248 (1972); ibid. 7(27), 249-254 (1972) · Zbl 0249.47028
[94] Volkmer, H., Sturm-Liouville problems with indefinite weights and Everitt’s inequality, Proc. Roy. Soc. Edinb. Sect. A, 126, 1097-1112 (1996) · Zbl 0865.34017 · doi:10.1017/S0308210500023283
[95] Weyl, H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71, 441-479 (1912) · JFM 43.0436.01 · doi:10.1007/BF01456804
[96] Wheeden, RL; Zygmund, A., Measure and Integral. An Introduction to Real Analysis (2015), Boca Raton: CRC Press, Boca Raton · Zbl 1326.26007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.