×

The Riesz basis property of an indefinite Sturm-Liouville problem with non-separated boundary conditions. (English) Zbl 1292.34080

The paper deals with the regular indefinite Sturm-Liouville eigenvalue problem \[ -f''+qf=\lambda rf \text{ on }[a,b],\tag{1} \] subject to the self-adjoint boundary conditions \[ C\left(\begin{matrix} f'(a)\\-f'(b)\end{matrix} \right)=D\left(\begin{matrix} f(a)\\f(b)\end{matrix} \right),\tag{2} \] where \(C,D\in \mathbb{C}^{2\times 2}\) satisfy the conditions \(\text{rank}(C|D)=2\), \(CD^*=DC^*\), \(q\) and \(r\) are real integrable functions on \([a,b]\), \(r\not=0\) a.e.on \([a,b]\), and \(r\) changes sign at finitely many points in \((a,b)\) (called turning points). The authors give sufficient conditions, and necessary and sufficient conditions on the coefficients \(q,r,C\) and \(D\) under which there exists a Riesz basis for the Hilbert space \(L^2_{|r|}[a,b]\) consisting of root functions (i.e., eigenfunctions and associated functions) of problem (1)–(2). A generalization of Parfenov’s criterion to certain classes of odd-dominated weights is also presented. The authors prove that the Riesz basis property of (1)–(2) depends only on the local behavior of \(r\) in neighborhoods of the turning points if and only if the boundary conditions \((2)\) are not row equivalent to the boundary conditions \[ e^{it}f(a)=f(b),\;f'(a)=e^{-it}f'(b)+df(a).\tag{3} \] An application of equation (1) with the boundary conditions (3) to a regular HELP-type inequality without boundary conditions is finally addressed.

MSC:

34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
34B09 Boundary eigenvalue problems for ordinary differential equations
34B24 Sturm-Liouville theory
47B50 Linear operators on spaces with an indefinite metric
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] Abasheeva N.L., Pyatkov S.G.: Counterexamples in indefinite Sturm-Liouville problems. Siberian Adv. Math. 7(4), 1-8 (1997) · Zbl 0942.34022
[2] Beals R.: Indefinite Sturm-Liouville problems and half range completeness. J. Differ. Equ. 56, 391-407 (1985) · Zbl 0512.34017 · doi:10.1016/0022-0396(85)90085-3
[3] Bennewitz C.: A general revision of the Hardy-Littlewood-Polya-Everitt (HELP) inequality. Proc. Roy. Soc. Edinburgh A 97, 9-20 (1984) · Zbl 0565.26010 · doi:10.1017/S0308210500031796
[4] Bennewitz C.: The HELP inequality in the regular case. Int. Schriftenreihe Numer. Math. 80, 337-346 (1987) · Zbl 0633.26007
[5] Binding P., Ćurgus B.: A counterexample in Sturm-Liouville completeness theory. Proc. Roy. Soc. Edinburgh A 134, 244-248 (2004) · Zbl 1061.34007 · doi:10.1017/S030821050000319X
[6] Binding P., Ćurgus B.: Riesz bases of root vectors of indefinite Sturm-Liouville problems with eigenparameter dependent boundary conditions, I. Oper. Theory: Adv. Appl. 163, 75-95 (2006) · Zbl 1104.34058
[7] Binding P., Ćurgus B.: Riesz bases of root vectors of indefinite Sturm-Liouville problems with eigenparameter dependent boundary conditions, II. Integr. Equ. Oper. Theor. 63, 473-499 (2009) · Zbl 1210.34038 · doi:10.1007/s00020-009-1659-0
[8] Binding P., Fleige A.: Conditions for an indefinite Sturm-Liouville Riesz basis property. Oper. Theor. Adv. Appl. 198, 87-95 (2009) · Zbl 1200.34105
[9] Binding P., Fleige A.: A review of a Riesz basis property for indefinite Sturm-Liouville problems. Oper. Matrices 5, 735-755 (2011) · Zbl 1244.34042 · doi:10.7153/oam-05-52
[10] Bingham N.H., Goldie C.M., Teugels J.T.: Regular Variation. Cambridge University Press, Cambridge (1987) · Zbl 0617.26001 · doi:10.1017/CBO9780511721434
[11] Buldygin V.V., Klesov O.I., Steinebach J.S.: On some properties of asymptotic quasi-inverse functions. Theor. Probab. Math. Stat. 77, 15-30 (2008) · Zbl 1068.26002 · doi:10.1090/S0094-9000-09-00744-3
[12] Ćurgus B.: On the regularity of the critical point infinity of definitizable operators. Integr. Equ. Oper. Theor. 8, 462-488 (1985) · Zbl 0572.47023 · doi:10.1007/BF01204699
[13] Ćurgus B., Langer H.: A Krein space approach to symmetric ordinary differential operators with an indefinite weight function. J. Differ. Equ. 79, 31-61 (1989) · Zbl 0693.34020 · doi:10.1016/0022-0396(89)90112-5
[14] Ćurgus B., Najman B.: A Krein space approach to elliptic eigenvalue problems with indefinite weights. Differ. Integr. Equ. 7, 1241-1252 (1994) · Zbl 0815.47044
[15] Evans W. D., Everitt W. N.: A return to the Hardy-Littlewood integral inequality. Proc. Roy. Soc. Lond. A 380, 447-486 (1982) · Zbl 0487.26005 · doi:10.1098/rspa.1982.0052
[16] Evans W. D., Everitt W. N.: HELP inequalities for limit-circle and regular problems. Proc. Roy. Soc. Lond. A 432, 367-390 (1991) · Zbl 0724.34086 · doi:10.1098/rspa.1991.0022
[17] Everitt W. N.: On an extension to an integro-differential inequality of Hardy, Littlewood and Polya. Proc. Roy. Soc. Edinburgh A 69, 295-333 (1972) · Zbl 0268.26013
[18] Fleige A.: Spectral Theory of Indefinite Krein-Feller Differential Operators, Mathematical Research, vol. 98. Akademie Verlag, Berlin (1996) · Zbl 0856.34085
[19] Fleige A.: A counterexample to completeness properties for indefinite Sturm-Liouville problems. Math. Nachr. 190, 123-128 (1998) · Zbl 0898.34018 · doi:10.1002/mana.19981900106
[20] Fleige A.: The Riesz basis property of an indefinite Sturm-Liouville problem with a non odd weight function. Integr. Equ. Oper. Theor. 60, 237-246 (2008) · Zbl 1147.34061 · doi:10.1007/s00020-007-1545-6
[21] Karabash I.M., Kostenko A.S., Malamud M.M.: The similarity problem for J-nonnegative Sturm-Liouville operators. J. Differ. Equ. 246, 964-997 (2009) · Zbl 1165.34012 · doi:10.1016/j.jde.2008.04.021
[22] Karabash I.M., Malamud M.M.: Indefinite Sturm-Liouville operators (sgn x)(−d2/dx2 + q(x)) with finite-zone potentials. Oper. Matrices 1, 301-368 (2007) · Zbl 1146.47032 · doi:10.7153/oam-01-20
[23] Kostenko A.: The similarity problem for indefinite Sturm-Liouville operators with periodic coefficients. Oper. Matrices 5, 705-722 (2011) · Zbl 1314.47058
[24] Kostenko, A.: On a necessary aspect for the Riesz basis property for indefinite Sturm-Liouville problems. ArXiv:1204.2444 · Zbl 1311.34056
[25] Kostenko A.: The similarity problem for indefinite Sturm-Liouville operators and the HELP inequality. Adv. Math. 246, 368-413 (2013) · Zbl 1287.34017 · doi:10.1016/j.aim.2013.05.025
[26] Krein, M.G.: The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications, II. Mat. Sb. (N.S.) 21(62),365-404 (1947, Russian) · Zbl 1200.34105
[27] Langer, H.: Spectral functions of definitizable operators in Krein spaces. In: D. Butkovic, H. Kraljevic and S. Kurepa (eds.) Functional analysis. Conference held at Dubrovnik, Yugoslavia, November 2-14, 1981. Lecture Notes in Mathematics, vol. 948, pp. 1-46. Springer, Berlin (1982) · Zbl 0512.34017
[28] Parfenov A.I.: On an embedding criterion for interpolation spaces and application to indefinite spectral problems. Siberian Math. J. 44(4), 638-644 (2003) · Zbl 1033.46059 · doi:10.1023/A:1024732422990
[29] Parfenov A.I.: The Ćurgus condition in indefinite Sturm-Liouville problems. Siberian Adv. Math. 15(2), 68-103 (2005) · Zbl 1089.34025
[30] Pyatkov S.G.: Some properties of eigenfunctions of linear pencils. Siberian Math. J. 30(4), 111-124 (1989) · Zbl 0759.47013
[31] Pyatkov S.G.: Some properties of eigenfunctions and associated functions of indefinite Sturm-Liouville problems. In: Nonclassical Problems of Mathematical Physics. Novosibirsk. Sobolev Institute of Mathematics, pp. 240-251 (2005, Russian) · Zbl 1103.34014
[32] Rogozin B.A.: A Tauberian theorem for increasing functions of dominated variation. Siberian Math. J. 43(2), 353-356 (2002) · Zbl 1012.60039 · doi:10.1023/A:1014757424289
[33] Volkmer H.: Sturm-Liouville problems with indefinite weights and Everitt’s inequality. Proc. Roy. Soc. Edinburgh Sect. A 126, 1097-1112 (1996) · Zbl 0865.34017 · doi:10.1017/S0308210500023283
[34] Weidmann, J.: Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258, Springer, Berlin (1987) · Zbl 0647.47052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.