×

Bridging the static patches: de Sitter holography and entanglement. (English) Zbl 07748949

Summary: In the context of de Sitter static-patch holography, two prescriptions have been put forward for holographic entanglement entropy computations, the monolayer and bilayer proposals. In this paper, we reformulate both prescriptions in a covariant way and extend them to include quantum corrections. We argue that the bilayer proposal is self-consistent, while the monolayer proposal exhibits contradictory behavior. In fact, the bilayer proposal leads to a stronger holographic description, in which the full spacetime is encoded on two screens at the cosmological horizons. At the classical level, we find large degeneracies of minimal extremal homologous surfaces, localized at the horizons, which can be lifted by quantum corrections. The entanglement wedges of subregions of the screens exhibit non-trivial behaviors, hinting at the existence of interesting phase transitions and non-locality in the holographic theory. In particular, while each screen encodes its corresponding static patch, we show that the entanglement wedge of the screen with the larger quantum area extends and covers the causal diamond between the screens, with a phase transition occurring when the quantum areas of the screens become equal. We argue that the capacity of the screens to encode the region between them is lost, when these are pushed further in the static patches of the observers and placed on stretched horizons.

MSC:

81-XX Quantum theory

References:

[1] J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim.4 (1972) 737 [INSPIRE].
[2] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[3] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
[4] Susskind, L., The World as a hologram, J. Math. Phys., 36, 6377 (1995) · Zbl 0850.00013 · doi:10.1063/1.531249
[5] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[6] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[7] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[8] Almheiri, A., The entropy of Hawking radiation, Rev. Mod. Phys., 93 (2021) · doi:10.1103/RevModPhys.93.035002
[9] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96 (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[10] Hubeny, VE; Rangamani, M.; Takayanagi, T., A Covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[11] Faulkner, T.; Lewkowycz, A.; Maldacena, J., Quantum corrections to holographic entanglement entropy, JHEP, 11, 074 (2013) · Zbl 1392.81021 · doi:10.1007/JHEP11(2013)074
[12] Engelhardt, N.; Wall, AC, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP, 01, 073 (2015) · doi:10.1007/JHEP01(2015)073
[13] Wall, AC, Maximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav., 31 (2014) · Zbl 1304.81139 · doi:10.1088/0264-9381/31/22/225007
[14] Freedman, M.; Headrick, M., Bit threads and holographic entanglement, Commun. Math. Phys., 352, 407 (2017) · Zbl 1425.81014 · doi:10.1007/s00220-016-2796-3
[15] Headrick, M.; Hubeny, VE, Covariant bit threads, JHEP, 07, 180 (2023) · Zbl 07744325 · doi:10.1007/JHEP07(2023)180
[16] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE]. · Zbl 1359.81171
[17] Van Raamsdonk, M., Building up spacetime with quantum entanglement, Gen. Rel. Grav., 42, 2323 (2010) · Zbl 1200.83052 · doi:10.1007/s10714-010-1034-0
[18] Maldacena, JM, Eternal black holes in anti-de Sitter, JHEP, 04, 021 (2003) · doi:10.1088/1126-6708/2003/04/021
[19] M. Van Raamsdonk, Lectures on Gravity and Entanglement, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, Seattle U.S.A, June 1-26 (2015), p. 297-351 [doi:10.1142/9789813149441_0005] [arXiv:1609.00026] [INSPIRE]. · Zbl 1359.81171
[20] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortsch. Phys., 61, 781 (2013) · Zbl 1338.83057 · doi:10.1002/prop.201300020
[21] Dong, X.; Harlow, D.; Wall, AC, Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.021601
[22] Cotler, J., Entanglement Wedge Reconstruction via Universal Recovery Channels, Phys. Rev. X, 9 (2019)
[23] Penington, G., Entanglement Wedge Reconstruction and the Information Paradox, JHEP, 09, 002 (2020) · Zbl 1454.81039 · doi:10.1007/JHEP09(2020)002
[24] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP, 12, 063 (2019) · Zbl 1431.83123 · doi:10.1007/JHEP12(2019)063
[25] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, JHEP, 03, 149 (2020) · Zbl 1435.83110 · doi:10.1007/JHEP03(2020)149
[26] Penington, G.; Shenker, SH; Stanford, D.; Yang, Z., Replica wormholes and the black hole interior, JHEP, 03, 205 (2022) · Zbl 1522.83227 · doi:10.1007/JHEP03(2022)205
[27] Almheiri, A., Replica Wormholes and the Entropy of Hawking Radiation, JHEP, 05, 013 (2020) · Zbl 1437.83084 · doi:10.1007/JHEP05(2020)013
[28] Page, DN, Information in black hole radiation, Phys. Rev. Lett., 71, 3743 (1993) · Zbl 0972.83567 · doi:10.1103/PhysRevLett.71.3743
[29] G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics, and Particle Creation, Phys. Rev. D15 (1977) 2738 [INSPIRE].
[30] Banks, T., Cosmological breaking of supersymmetry?, Int. J. Mod. Phys. A, 16, 910 (2001) · Zbl 0982.83040 · doi:10.1142/S0217751X01003998
[31] E. Witten, Quantum gravity in de Sitter space, in the proceedings of the Strings 2001: International Conference, Mumbai India, January 5-10 (2001) [hep-th/0106109] [INSPIRE]. · Zbl 1054.83013
[32] Dyson, L.; Lindesay, J.; Susskind, L., Is there really a de Sitter/CFT duality?, JHEP, 08, 045 (2002) · Zbl 1226.83030 · doi:10.1088/1126-6708/2002/08/045
[33] Dyson, L.; Kleban, M.; Susskind, L., Disturbing implications of a cosmological constant, JHEP, 10, 011 (2002) · doi:10.1088/1126-6708/2002/10/011
[34] Goheer, N.; Kleban, M.; Susskind, L., The Trouble with de Sitter space, JHEP, 07, 056 (2003) · doi:10.1088/1126-6708/2003/07/056
[35] T. Banks, W. Fischler and S. Paban, Recurrent nightmares? Measurement theory in de Sitter space, JHEP12 (2002) 062 [hep-th/0210160] [INSPIRE].
[36] T. Banks, Some thoughts on the quantum theory of de sitter space, in the proceedings of the The Davis Meeting on Cosmic Inflation, Davis U.S.A, March 22-23 (2003) [astro-ph/0305037] [INSPIRE].
[37] Strominger, A., The dS/CFT correspondence, JHEP, 10, 034 (2001) · doi:10.1088/1126-6708/2001/10/034
[38] Bousso, R.; Maloney, A.; Strominger, A., Conformal vacua and entropy in de Sitter space, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.104039
[39] Strominger, A., Inflation and the dS/CFT correspondence, JHEP, 11, 049 (2001) · doi:10.1088/1126-6708/2001/11/049
[40] Anninos, D.; Hartnoll, SA; Hofman, DM, Static Patch Solipsism: Conformal Symmetry of the de Sitter Worldline, Class. Quant. Grav., 29 (2012) · Zbl 1253.83014 · doi:10.1088/0264-9381/29/7/075002
[41] Anninos, D.; Hofman, DM, Infrared Realization of dS_2in AdS_2, Class. Quant. Grav., 35 (2018) · Zbl 1409.83135 · doi:10.1088/1361-6382/aab143
[42] Anninos, D.; Hartman, T.; Strominger, A., Higher Spin Realization of the dS/CFT Correspondence, Class. Quant. Grav., 34 (2017) · Zbl 1354.83043 · doi:10.1088/1361-6382/34/1/015009
[43] Hikida, Y.; Nishioka, T.; Takayanagi, T.; Taki, Y., CFT duals of three-dimensional de Sitter gravity, JHEP, 05, 129 (2022) · Zbl 1522.81504 · doi:10.1007/JHEP05(2022)129
[44] Banihashemi, B.; Jacobson, T., Thermodynamic ensembles with cosmological horizons, JHEP, 07, 042 (2022) · Zbl 1522.83125 · doi:10.1007/JHEP07(2022)042
[45] Banihashemi, B.; Jacobson, T.; Svesko, A.; Visser, M., The minus sign in the first law of de Sitter horizons, JHEP, 01, 054 (2023) · Zbl 1540.83035 · doi:10.1007/JHEP01(2023)054
[46] L. Susskind, De Sitter Holography: Fluctuations, Anomalous Symmetry, and Wormholes, Universe7 (2021) 464 [arXiv:2106.03964] [INSPIRE].
[47] Banks, T.; Draper, P., Comments on the entanglement spectrum of de Sitter space, JHEP, 01, 135 (2023) · Zbl 1540.83036 · doi:10.1007/JHEP01(2023)135
[48] Bousso, R., A Covariant entropy conjecture, JHEP, 07, 004 (1999) · Zbl 0951.83011 · doi:10.1088/1126-6708/1999/07/004
[49] Bousso, R., The Holographic principle, Rev. Mod. Phys., 74, 825 (2002) · Zbl 1205.83025 · doi:10.1103/RevModPhys.74.825
[50] Alishahiha, M.; Karch, A.; Silverstein, E.; Tong, D., The dS/dS correspondence, AIP Conf. Proc., 743, 393 (2004) · doi:10.1063/1.1848341
[51] M. Alishahiha, A. Karch and E. Silverstein, Hologravity, JHEP06 (2005) 028 [hep-th/0504056] [INSPIRE].
[52] Dong, X.; Horn, B.; Silverstein, E.; Torroba, G., Micromanaging de Sitter holography, Class. Quant. Grav., 27 (2010) · Zbl 1206.83140 · doi:10.1088/0264-9381/27/24/245020
[53] Dong, X.; Silverstein, E.; Torroba, G., De Sitter Holography and Entanglement Entropy, JHEP, 07, 050 (2018) · Zbl 1395.81213 · doi:10.1007/JHEP07(2018)050
[54] Arias, C.; Diaz, F.; Sundell, P., De Sitter Space and Entanglement, Class. Quant. Grav., 37 (2020) · Zbl 1478.83022 · doi:10.1088/1361-6382/ab5b78
[55] Arias, C.; Diaz, F.; Olea, R.; Sundell, P., Liouville description of conical defects in dS_4, Gibbons-Hawking entropy as modular entropy, and dS_3holography, JHEP, 04, 124 (2020) · Zbl 1436.83020 · doi:10.1007/JHEP04(2020)124
[56] Arenas-Henriquez, G.; Diaz, F.; Sundell, P., Logarithmic corrections, entanglement entropy, and UV cutoffs in de Sitter spacetime, JHEP, 08, 261 (2022) · Zbl 1522.83114 · doi:10.1007/JHEP08(2022)261
[57] Emparan, R., Black holes in dS_3, JHEP, 11, 073 (2022) · Zbl 1536.83058 · doi:10.1007/JHEP11(2022)073
[58] Svesko, A.; Verheijden, E.; Verlinde, EP; Visser, MR, Quasi-local energy and microcanonical entropy in two-dimensional nearly de Sitter gravity, JHEP, 08, 075 (2022) · Zbl 1522.83242 · doi:10.1007/JHEP08(2022)075
[59] E. Panella and A. Svesko, Quantum Kerr-de Sitter black holes in three dimensions, JHEP06 (2023) 127 [arXiv:2303.08845] [INSPIRE]. · Zbl 07716833
[60] Balasubramanian, V.; Kar, A.; Ugajin, T., Entanglement between two disjoint universes, JHEP, 02, 136 (2021) · Zbl 1460.81006 · doi:10.1007/JHEP02(2021)136
[61] Hartman, T.; Jiang, Y.; Shaghoulian, E., Islands in cosmology, JHEP, 11, 111 (2020) · doi:10.1007/JHEP11(2020)111
[62] Balasubramanian, V.; Kar, A.; Ugajin, T., Islands in de Sitter space, JHEP, 02, 072 (2021) · Zbl 1460.83063 · doi:10.1007/JHEP02(2021)072
[63] Geng, H.; Nomura, Y.; Sun, H-Y, Information paradox and its resolution in de Sitter holography, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.126004
[64] Sybesma, W., Pure de Sitter space and the island moving back in time, Class. Quant. Grav., 38 (2021) · Zbl 1482.83109 · doi:10.1088/1361-6382/abff9a
[65] Aalsma, L.; Sybesma, W., The Price of Curiosity: Information Recovery in de Sitter Space, JHEP, 05, 291 (2021) · Zbl 1466.83069 · doi:10.1007/JHEP05(2021)291
[66] Kames-King, J.; Verheijden, EMH; Verlinde, EP, No Page curves for the de Sitter horizon, JHEP, 03, 040 (2022) · Zbl 1522.83071 · doi:10.1007/JHEP03(2022)040
[67] Levine, A.; Shaghoulian, E., Encoding beyond cosmological horizons in de Sitter JT gravity, JHEP, 02, 179 (2023) · Zbl 1541.83053 · doi:10.1007/JHEP02(2023)179
[68] Narayan, K., Extremal surfaces in de Sitter spacetime, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.126011
[69] Narayan, K., On extremal surfaces and de Sitter entropy, Phys. Lett. B, 779, 214 (2018) · Zbl 1383.83238 · doi:10.1016/j.physletb.2018.02.010
[70] Chapman, S.; Galante, DA; Kramer, ED, Holographic complexity and de Sitter space, JHEP, 02, 198 (2022) · Zbl 1522.83283 · doi:10.1007/JHEP02(2022)198
[71] Diaz, P.; Per, MA; Segui, A., Fischler-Susskind holographic cosmology revisited, Class. Quant. Grav., 24, 5595 (2007) · Zbl 1148.83024 · doi:10.1088/0264-9381/24/22/019
[72] Caginalp, RJ, Holographic Complexity in FRW Spacetimes, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.066027
[73] Chandrasekaran, V.; Longo, R.; Penington, G.; Witten, E., An algebra of observables for de Sitter space, JHEP, 02, 082 (2023) · Zbl 1541.81075 · doi:10.1007/JHEP02(2023)082
[74] Kundu, A., Wormholes and holography: an introduction, Eur. Phys. J. C, 82, 447 (2022) · doi:10.1140/epjc/s10052-022-10376-z
[75] Susskind, L., Entanglement and Chaos in De Sitter Space Holography: An SYK Example, JHAP, 1, 1 (2021)
[76] Shaghoulian, E., The central dogma and cosmological horizons, JHEP, 01, 132 (2022) · Zbl 1521.83148 · doi:10.1007/JHEP01(2022)132
[77] Shaghoulian, E.; Susskind, L., Entanglement in De Sitter space, JHEP, 08, 198 (2022) · Zbl 1522.81536 · doi:10.1007/JHEP08(2022)198
[78] Strominger, A.; Thompson, DM, A Quantum Bousso bound, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.044007
[79] V. Franken, H. Partouche, F. Rondeau and N. Toumbas, Work in progress.
[80] L. Susskind, Three Lectures on Complexity and Black Holes, Springer Cham (2018) [doi:10.1007/978-3-030-45109-7] [arXiv:1810.11563] [INSPIRE]. · Zbl 1435.83004
[81] Akal, I.; Kusuki, Y.; Takayanagi, T.; Wei, Z., Codimension two holography for wedges, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.126007
[82] Geng, H., Information Transfer with a Gravitating Bath, SciPost Phys., 10, 103 (2021) · doi:10.21468/SciPostPhys.10.5.103
[83] Doi, K., Timelike entanglement entropy, JHEP, 05, 052 (2023) · Zbl 07701867 · doi:10.1007/JHEP05(2023)052
[84] Zhang, P.; Liu, C.; Chen, X., Subsystem Rényi Entropy of Thermal Ensembles for SYK-like models, SciPost Phys., 8, 094 (2020) · doi:10.21468/SciPostPhys.8.6.094
[85] L. Susskind, Scrambling in Double-Scaled SYK and De Sitter Space, arXiv:2205.00315 [INSPIRE].
[86] L. Susskind, De Sitter Space, Double-Scaled SYK, and the Separation of Scales in the Semiclassical Limit, arXiv:2209.09999 [INSPIRE].
[87] A.A. Rahman, dS JT Gravity and Double-Scaled SYK, arXiv:2209.09997 [INSPIRE].
[88] Akers, C.; Penington, G., Quantum minimal surfaces from quantum error correction, SciPost Phys., 12, 157 (2022) · doi:10.21468/SciPostPhys.12.5.157
[89] Bousso, R.; Fisher, Z.; Leichenauer, S.; Wall, AC, Quantum focusing conjecture, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.064044
[90] Calabrese, P.; Cardy, JL, Entanglement entropy and quantum field theory, J. Stat. Mech., 0406, P06002 (2004) · Zbl 1082.82002
[91] Chen, Y.; Gorbenko, V.; Maldacena, J., Bra-ket wormholes in gravitationally prepared states, JHEP, 02, 009 (2021) · Zbl 1460.83059 · doi:10.1007/JHEP02(2021)009
[92] H. Araki and E.H. Lieb, Entropy inequalities, Commun. Math. Phys.18 (1970) 160 [INSPIRE].
[93] Banks, T.; Fiol, B.; Morisse, A., Towards a quantum theory of de Sitter space, JHEP, 12, 004 (2006) · Zbl 1226.83021 · doi:10.1088/1126-6708/2006/12/004
[94] L. Susskind, Black Holes Hint Towards De Sitter-Matrix Theory, arXiv:2109.01322 [INSPIRE].
[95] Hartman, T.; Maldacena, J., Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP, 05, 014 (2013) · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.