×

Encoding beyond cosmological horizons in de Sitter JT gravity. (English) Zbl 1541.83053

Summary: Black hole event horizons and cosmological event horizons share many properties, making it natural to ask whether our recent advances in understanding black holes generalize to cosmology. To this end, we discuss a paradox that occurs if observers can access what lies beyond their cosmological horizon in the same way that they can access what lies beyond a black hole horizon. In particular, distinct observers with distinct horizons may encode the same portion of spacetime, violating the no-cloning theorem of quantum mechanics. This paradox is due precisely to the observer-dependence of the cosmological horizon – the sharpest difference from a black hole horizon – although we will argue that the gravity path integral avoids the paradox in controlled examples.

MSC:

83C57 Black holes
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C45 Quantization of the gravitational field
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E05 Geometrodynamics and the holographic principle

References:

[1] Gibbons, GW; Hawking, SW, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D, 15, 2752 (1977) · doi:10.1103/PhysRevD.15.2752
[2] B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A Holographic framework for eternal inflation, Phys. Rev. D74 (2006) 086003 [hep-th/0606204] [INSPIRE].
[3] Chen, Y.; Gorbenko, V.; Maldacena, J., Bra-ket wormholes in gravitationally prepared states, JHEP, 02, 009 (2021) · Zbl 1460.83059 · doi:10.1007/JHEP02(2021)009
[4] Hartman, T.; Jiang, Y.; Shaghoulian, E., Islands in cosmology, JHEP, 11, 111 (2020) · doi:10.1007/JHEP11(2020)111
[5] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[6] Strominger, A., The dS / CFT correspondence, JHEP, 10, 034 (2001) · doi:10.1088/1126-6708/2001/10/034
[7] Bousso, R., The Holographic principle for general backgrounds, Class. Quant. Grav., 17, 997 (2000) · Zbl 0952.81048 · doi:10.1088/0264-9381/17/5/309
[8] Banks, T., Cosmological breaking of supersymmetry?, Int. J. Mod. Phys. A, 16, 910 (2001) · Zbl 0982.83040 · doi:10.1142/S0217751X01003998
[9] W. Fischler, Taking de Sitter seriously, talk given at Role of scaling laws in physics and biology (Celebrating the 60th birthday of Geoffrey West), Santa Fe (Dec. 2000).
[10] Bousso, R., Positive vacuum energy and the N bound, JHEP, 11, 038 (2000) · Zbl 0990.83513 · doi:10.1088/1126-6708/2000/11/038
[11] T. Banks and W. Fischler, M theory observables for cosmological space-times, RUNHETC-2001-5 (2001), hep-th/0102077 [INSPIRE].
[12] M.K. Parikh, I. Savonije and E.P. Verlinde, Elliptic de Sitter space: dS/Z(2), Phys. Rev. D67 (2003) 064005 [hep-th/0209120] [INSPIRE]. · Zbl 1222.83043
[13] Dyson, L.; Lindesay, J.; Susskind, L., Is there really a de Sitter/CFT duality?, JHEP, 08, 045 (2002) · Zbl 1226.83030 · doi:10.1088/1126-6708/2002/08/045
[14] T. Banks, W. Fischler and S. Paban, Recurrent nightmares? Measurement theory in de Sitter space, JHEP12 (2002) 062 [hep-th/0210160] [INSPIRE].
[15] T. Banks and W. Fischler, An Upper bound on the number of e-foldings, UTTG-04-03 (2003), astro-ph/0307459 [INSPIRE].
[16] Banks, T.; Fiol, B.; Morisse, A., Towards a quantum theory of de Sitter space, JHEP, 12, 004 (2006) · Zbl 1226.83021 · doi:10.1088/1126-6708/2006/12/004
[17] T. Banks and W. Fischler, Holographic Inflation Revised, in S. Saunders, J. Silk, J.D. Barrow and K. Chamcham eds., The Philosophy of Cosmology, part III (2017) pp. 241-262 [arXiv:1501.01686] [INSPIRE].
[18] Banks, T.; Fischler, W., The holographic spacetime model of cosmology, Int. J. Mod. Phys. D, 27, 1846005 (2018) · doi:10.1142/S0218271818460057
[19] T. Banks and W. Fischler, Holographic Space-time, Newton‘s Law, and the Dynamics of Horizons, arXiv:2003.03637 [INSPIRE].
[20] L. Susskind, Three Impossible Theories, arXiv:2107.11688 [INSPIRE].
[21] Shaghoulian, E., The central dogma and cosmological horizons, JHEP, 01, 132 (2022) · Zbl 1521.83148 · doi:10.1007/JHEP01(2022)132
[22] Anninos, D.; Ng, GS; Strominger, A., Future Boundary Conditions in De Sitter Space, JHEP, 02, 032 (2012) · Zbl 1309.81306 · doi:10.1007/JHEP02(2012)032
[23] Aguilar-Gutierrez, SE; Chatwin-Davies, A.; Hertog, T.; Pinzani-Fokeeva, N.; Robinson, B., Islands in Multiverse Models, JHEP, 11, 212 (2021) · Zbl 1521.83037 · doi:10.1007/JHEP11(2021)212
[24] B.S. Kay and R.M. Wald, Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon, Phys. Rept.207 (1991) 49 [INSPIRE]. · Zbl 0861.53074
[25] S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav.17 (2000) 4999 [gr-qc/0007021] [INSPIRE]. · Zbl 0972.83015
[26] Leblond, F.; Marolf, D.; Myers, RC, Tall tales from de Sitter space 1: Renormalization group flows, JHEP, 06, 052 (2002) · doi:10.1088/1126-6708/2002/06/052
[27] D. Harlow, The Ryu-Takayanagi Formula from Quantum Error Correction, Commun. Math. Phys.354 (2017) 865 [arXiv:1607.03901] [INSPIRE]. · Zbl 1377.81040
[28] D. Harlow and J.-q. Wu, Algebra of diffeomorphism-invariant observables in Jackiw-Teitelboim gravity, JHEP05 (2022) 097 [arXiv:2108.04841] [INSPIRE]. · Zbl 1522.83389
[29] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of hawking radiation, Rev. Mod. Phys.93 (2021).
[30] Akers, C.; Rath, P., Holographic Renyi Entropy from Quantum Error Correction, JHEP, 05, 052 (2019) · Zbl 1416.83095 · doi:10.1007/JHEP05(2019)052
[31] Dong, X.; Harlow, D.; Marolf, D., Flat entanglement spectra in fixed-area states of quantum gravity, JHEP, 10, 240 (2019) · Zbl 1427.83020 · doi:10.1007/JHEP10(2019)240
[32] A. Vilenkin, The Birth of Inflationary Universes, Phys. Rev. D27 (1983) 2848 [INSPIRE].
[33] A. Vilenkin, Quantum Creation of Universes, Phys. Rev. D30 (1984) 509 [INSPIRE].
[34] J. Feldbrugge, J.-L. Lehners and N. Turok, Lorentzian Quantum Cosmology, Phys. Rev. D95 (2017) 103508 [arXiv:1703.02076] [INSPIRE].
[35] J. Hartle, S.W. Hawking and T. Hertog, Local Observation in Eternal inflation, Phys. Rev. Lett.106 (2011) 141302 [arXiv:1009.2525] [INSPIRE].
[36] J. Hartle and T. Hertog, One Bubble to Rule Them All, Phys. Rev. D95 (2017) 123502 [arXiv:1604.03580] [INSPIRE].
[37] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, JHEP, 03, 149 (2020) · Zbl 1435.83110 · doi:10.1007/JHEP03(2020)149
[38] Balasubramanian, V.; Kar, A.; Ugajin, T., Islands in de Sitter space, JHEP, 02, 072 (2021) · Zbl 1460.83063 · doi:10.1007/JHEP02(2021)072
[39] Shaghoulian, E.; Susskind, L., Entanglement in De Sitter space, JHEP, 08, 198 (2022) · Zbl 1522.81536 · doi:10.1007/JHEP08(2022)198
[40] Cooper, S.; Rozali, M.; Swingle, B.; Van Raamsdonk, M.; Waddell, C.; Wakeham, D., Black hole microstate cosmology, JHEP, 07, 065 (2019) · Zbl 1418.83024 · doi:10.1007/JHEP07(2019)065
[41] Van Raamsdonk, M., Cosmology from confinement?, JHEP, 03, 039 (2022) · Zbl 1522.83458 · doi:10.1007/JHEP03(2022)039
[42] S. Antonini, P. Simidzija, B. Swingle and M. Van Raamsdonk, Cosmology from the vacuum, arXiv:2203.11220 [INSPIRE]. · Zbl 1531.85006
[43] Freivogel, B.; Hubeny, VE; Maloney, A.; Myers, RC; Rangamani, M.; Shenker, S., Inflation in AdS/CFT, JHEP, 03, 007 (2006) · Zbl 1226.83060 · doi:10.1088/1126-6708/2006/03/007
[44] Belin, A.; de Boer, J.; Kruthoff, J.; Michel, B.; Shaghoulian, E.; Shyani, M., Universality of sparse d > 2 conformal field theory at large N, JHEP, 03, 067 (2017) · Zbl 1377.81154 · doi:10.1007/JHEP03(2017)067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.