×

Extended phase space in general gauge theories. (English) Zbl 1537.81140

Summary: In a recent paper, it was shown that in diffeomorphism-invariant theories, the symplectic vector fields induced by spacetime diffeomorphisms are integrable if one introduces an extended phase space. In this paper we extend the notion of extended phase space to all gauge theories with arbitrary combinations of internal and spacetime local symmetries. We formulate this in terms of a corresponding Atiyah Lie algebroid, a geometric object derived from a principal bundle which features internal symmetries and diffeomorphisms on an equal footing. In this language, gauge transformations are understood as morphisms between Atiyah Lie algebroids that preserve the geometric structures encoded therein. The extended configuration space of a gauge theory can subsequently be understood as the space of pairs \((\varphi, \Phi)\), where \(\varphi\) is a Lie algebroid morphism and \(\Phi\) is a field configuration in the non-extended sense. Starting from this data, we outline a very powerful, manifestly geometric approach to the extended phase space. Using this approach, we find that the action of the group of gauge transformations and diffeomorphisms on the symplectic geometry of any covariant theory is integrable. We motivate our construction by carefully examining the need for extended phase space in Chern-Simons gauge theories and display its usefulness by re-computing the charge algebra. We also describe the implementation of the configuration algebroid in Einstein-Yang-Mills theories.

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
60F17 Functional limit theorems; invariance principles
53A45 Differential geometric aspects in vector and tensor analysis
83F05 Relativistic cosmology
81Q80 Special quantum systems, such as solvable systems
13B02 Extension theory of commutative rings
22E70 Applications of Lie groups to the sciences; explicit representations
32L05 Holomorphic bundles and generalizations

References:

[1] Ciambelli, L.; Leigh, R. G.; Pai, P.-C., Embeddings and integrable charges for extended corner symmetry. Phys. Rev. Lett. (2022)
[2] Crnkovic, C.; Witten, E., Covariant description of canonical formalism in geometrical theories, 676-684 · Zbl 0966.81533
[3] Crnkovic, C., Symplectic geometry of the covariant phase space, superstrings and superspace. Class. Quantum Gravity, 1557-1575 (1988) · Zbl 0665.53052
[4] Compère, G.; Fiorucci, A., Advanced lectures on general relativity · Zbl 1419.83003
[5] Kijowski, J.; Szczyrba, W., A canonical structure for classical field theories. Commun. Math. Phys., 2, 183-206 (1976) · Zbl 0348.49017
[6] Gawędzki, K., On the geometrization of the canonical formalism in the classical field theory. Rep. Math. Phys., 4, 307-326 (1972)
[7] Kijowski, J., A finite-dimensional canonical formalism in the classical field theory. Commun. Math. Phys., 2, 99-128 (1973)
[8] Newman, E.; Penrose, R., An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 566-578 (1962) · Zbl 0108.40905
[9] Barnich, G.; Lambert, P.-H., A note on the Newman-unti group and the BMS charge algebra in terms of Newman-Penrose coefficients. Adv. Math. Phys. (2012) · Zbl 1266.83132
[10] Barnich, G.; Troessaert, C., Finite BMS transformations. J. High Energy Phys. (2016) · Zbl 1388.83514
[11] Barnich, G.; Mao, P.; Ruzziconi, R., BMS current algebra in the context of the Newman-Penrose formalism. Class. Quantum Gravity, 9 (2020) · Zbl 1479.83179
[12] Rejzner, K.; Schiavina, M., Asymptotic symmetries in the BV-BFV formalism. Commun. Math. Phys., 2, 1083-1132 (2021) · Zbl 1470.81051
[13] Noether, E., Invariant variation problems. Transp. Theory Stat. Phys., 3, 186-207 (1971) · Zbl 0292.49008
[14] Ciambelli, L., From asymptotic symmetries to the corner proposal (2022), 12
[15] Freidel, L.; Geiller, M.; Wieland, W., Corner symmetry and quantum geometry
[16] Balachandran, A. P.; Chandar, L.; Momen, A., Edge states in gravity and black hole physics. Nucl. Phys. B, 581-596 (1996) · Zbl 0925.83040
[17] Carlip, S., The statistical mechanics of the (2+1)-dimensional black hole. Phys. Rev. D, 632-637 (1995)
[18] Carlip, S., The statistical mechanics of the three-dimensional Euclidean black hole. Phys. Rev. D, 878-882 (1997)
[19] Balachandran, A. P.; Chandar, L.; Momen, A., Edge states in canonical gravity · Zbl 0925.83040
[20] Regge, T.; Teitelboim, C., Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys., 1, 286-318 (1974) · Zbl 0328.70016
[21] Ciambelli, L.; Leigh, R. G., Isolated surfaces and symmetries of gravity. Phys. Rev. D, 4 (2021)
[22] Ciambelli, L.; Leigh, R. G., Universal corner symmetry and the orbit method for gravity · Zbl 1518.83022
[23] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity. J. High Energy Phys. (2016) · Zbl 1390.83016
[24] Donnelly, W.; Freidel, L.; Moosavian, S. F.; Speranza, A. J., Gravitational edge modes, coadjoint orbits, and hydrodynamics. J. High Energy Phys. (2021) · Zbl 1472.83011
[25] Geiller, M., Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity. Nucl. Phys. B, 312-365 (2017) · Zbl 1373.81284
[26] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part I. Corner potentials and charges. J. High Energy Phys. (2020) · Zbl 1460.83030
[27] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part II. Corner metric and Lorentz charges. J. High Energy Phys. (2020) · Zbl 1456.83024
[28] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part III. Corner simplicity constraints. J. High Energy Phys. (2021)
[29] Freidel, L., A canonical bracket for open gravitational system
[30] Chandrasekaran, V.; Flanagan, E. E.; Shehzad, I.; Speranza, A. J., Brown-York charges at null boundaries. J. High Energy Phys. (2022) · Zbl 1521.83005
[31] Donnelly, W.; Freidel, L.; Moosavian, S. F.; Speranza, A. J., Matrix quantization of gravitational edge modes · Zbl 07701978
[32] Wald, R. M., Black hole entropy is the Noether charge. Phys. Rev. D, 8 (1993) · Zbl 0942.83512
[33] Iyer, V.; Wald, R. M., Some properties of the Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D, 2, 846 (1994)
[34] Fliss, J. R.; Wen, X.; Parrikar, O.; Hsieh, C.-T.; Han, B.; Hughes, T. L.; Leigh, R. G., Interface contributions to topological entanglement in Abelian Chern-Simons theory. J. High Energy Phys. (2017) · Zbl 1382.58019
[35] Banados, M.; Teitelboim, C.; Zanelli, J., The black hole in three-dimensional space-time. Phys. Rev. Lett., 1849-1851 (1992) · Zbl 0968.83514
[36] Strominger, A., Black hole entropy from near horizon microstates. J. High Energy Phys. (1998) · Zbl 0955.83010
[37] Donnelly, W., Decomposition of entanglement entropy in lattice gauge theory. Phys. Rev. D (2012)
[38] Donnelly, W.; Wall, A. C., Entanglement entropy of electromagnetic edge modes. Phys. Rev. Lett., 11 (2015)
[39] Donnelly, W., Entanglement entropy and nonabelian gauge symmetry. Class. Quantum Gravity, 21 (2014) · Zbl 1304.81121
[40] Donnelly, W.; Wall, A. C., Geometric entropy and edge modes of the electromagnetic field. Phys. Rev. D, 10 (2016)
[41] Das, D.; Datta, S., Universal features of left-right entanglement entropy. Phys. Rev. Lett., 13 (2015)
[42] Wen, X.; Matsuura, S.; Ryu, S., Edge theory approach to topological entanglement entropy, mutual information and entanglement negativity in Chern-Simons theories. Phys. Rev. B, 24 (2016)
[43] Carlip, S., Black hole entropy from bondi-metzner-sachs symmetry at the horizon. Phys. Rev. Lett., 10 (2018)
[44] Chen, L.-Q.; Chua, W. Z.; Liu, S.; Speranza, A. J.; d, B.; Torres, S. L., Virasoro hair and entropy for axisymmetric killing horizons. Phys. Rev. Lett. (2020)
[45] Speranza, A. J., Local phase space and edge modes for diffeomorphism-invariant theories. J. High Energy Phys. (2018) · Zbl 1387.83011
[46] Geiller, M.; Jai-akson, P., Extended actions, dynamics of edge modes, and entanglement entropy. J. High Energy Phys. (2020) · Zbl 1454.81134
[47] Faulkner, T.; Leigh, R. G.; Parrikar, O.; Wang, H., Modular Hamiltonians for deformed half-spaces and the averaged null energy condition. J. High Energy Phys., 9, 1-35 (2016) · Zbl 1390.83106
[48] Faulkner, T.; Leigh, R. G.; Parrikar, O., Shape dependence of entanglement entropy in conformal field theories. J. High Energy Phys., 4, 1-39 (2016)
[49] Balasubramanian, V.; Fliss, J. R.; Leigh, R. G.; Parrikar, O., Multi-boundary entanglement in Chern-Simons theory and link invariants. J. High Energy Phys., 4, 1-34 (2017) · Zbl 1378.81061
[50] Balasubramanian, V.; DeCross, M.; Fliss, J.; Kar, A.; Leigh, R. G.; Parrikar, O., Entanglement entropy and the colored Jones polynomial. J. High Energy Phys., 5, 1-41 (2018) · Zbl 1391.81177
[51] Chandrasekaran, V.; Speranza, A. J., Anomalies in gravitational charge algebras of null boundaries and black hole entropy. J. High Energy Phys. (2021) · Zbl 1459.83025
[52] Klinger, M. S.; Leigh, R. G., Crossed products, extended phase spaces and the resolution of entanglement singularities · Zbl 1541.81025
[53] Pradines, J., Theorie de Lie pour les groupoides differentiable. C. R. Acad. Sci. Paris, 245-248 (1967) · Zbl 0154.21704
[54] Mackenzie, K. C.; Mackenzie, K. C., General Theory of Lie Groupoids and Lie Algebroids (2005), Cambridge University Press · Zbl 1078.58011
[55] Crainic, M.; Fernandes, R. L., Integrability of Lie brackets. Ann. Math., 575-620 (2003) · Zbl 1037.22003
[56] Fernandes, R. L., Lie algebroids, holonomy and characteristic classes. Adv. Math., 1, 119-179 (2002) · Zbl 1007.22007
[57] Roytenberg, D., On the structure of graded symplectic supermanifolds and courant algebroids. Contemp. Math., 169-186 (2002) · Zbl 1036.53057
[58] Roytenberg, D., Courant Algebroids, Derived Brackets and Even Symplectic Supermanifolds (1999), Berkeley, University of California
[59] Roytenberg, D., AKSZ-BV formalism and courant algebroid-induced topological field theories. Lett. Math. Phys., 2, 143-159 (2007) · Zbl 1125.81040
[60] Fournel, C.; Lazzarini, S.; Masson, T., Formulation of gauge theories on transitive Lie algebroids. J. Geom. Phys., 174-191 (2013) · Zbl 1268.58002
[61] Ciambelli, L.; Leigh, R. G., Lie algebroids and the geometry of off-shell BRST. Nucl. Phys. B (2021) · Zbl 1506.81058
[62] Jia, W.; Klinger, M. S.; Leigh, R. G., BRST cohomology is Lie algebroid cohomology. Nucl. Phys. B (2023) · Zbl 1531.81054
[63] Blohmann, C.; Fernandes, M. C.B.; Weinstein, A., Groupoid symmetry and constraints in general relativity. Commun. Contemp. Math., 01 (2013) · Zbl 1261.83006
[64] Lazzarini, S.; Masson, T., Connections on Lie algebroids and on derivation-based noncommutative geometry. J. Geom. Phys., 2, 387-402 (2012) · Zbl 1260.58002
[65] Carow-Watamura, U.; Heller, M. A.; Ikeda, N.; Kaneko, T.; Watamura, S., Off-shell covariantization of algebroid gauge theories. PTEP, 8 (2017) · Zbl 1524.81081
[66] Kotov, A.; Strobl, T., Lie algebroids, gauge theories, and compatible geometrical structures. Rev. Math. Phys., 04 (2018)
[67] Attard, J.; François, J.; Lazzarini, S.; Masson, T., Cartan connections and Atiyah Lie algebroids. J. Geom. Phys. (2020) · Zbl 1435.53058
[68] Strobl, T., Algebroid Yang-Mills theories. Phys. Rev. Lett. (2004)
[69] Bojowald, M.; Kotov, A.; Strobl, T., Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries. J. Geom. Phys., 4, 400-426 (2005) · Zbl 1076.53102
[70] Mayer, C.; Strobl, T., Lie algebroid Yang Mills with matter fields. J. Geom. Phys., 1613-1623 (2009) · Zbl 1177.53024
[71] Souriau, J.-M., Quantification géométrique. Commun. Math. Phys., 5, 374-398 (1966) · Zbl 1148.81307
[72] Souriau, J.-M.; Cushman, C., Structure of Dynamical Systems: a Symplectic View of Physics (1997), Springer Science & Business Media · Zbl 0884.70001
[73] Guillemin, V.; Sternberg, S., A normal form for the moment map. Differ. Geometr. Methods Math. Phys., 161-175 (1984) · Zbl 0548.58011
[74] Donaldson, S. K., Moment maps and diffeomorphisms. Asian J. Math., 1, 1-16 (1999) · Zbl 0999.53053
[75] Kostant, B., On certain unitary representations which arise from a quantization theory. Conf. Proc. C, 237-253 (1969) · Zbl 0229.20048
[76] Kostant, B., Quantization and unitary representations, 87-208 · Zbl 0223.53028
[77] Atiyah, M. F.; Bott, R., The moment map and equivariant cohomology. Topology, 1, 1-28 (1984) · Zbl 0521.58025
[78] Blohmann, C.; Weinstein, A., Hamiltonian Lie algebroids (2018), arXiv preprint
[79] Brown, J. D.; Henneaux, M., Central charges in the canonical realization of asymptotic symmetries: an example from three dimensional gravity. Commun. Math. Phys., 2, 207-226 (1986) · Zbl 0584.53039
[80] Barnich, G.; Brandt, F., Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B, 1-2, 3-82 (2002) · Zbl 0995.81054
[81] Klinger, M.; Leigh, R. G., Geometric Quantization and the Hamiltonian Algebroid (2023), work in progress
[82] Faddeev, L. D.; Popov, V. N., Feynman diagrams for the Yang-Mills field. Phys. Lett. B, 29-30 (1967)
[83] Gribov, V. N., Quantization of nonabelian gauge theories. Nucl. Phys. B, 1 (1978)
[84] de, H.; Gomes, A., Gauge theory in Riem(M). J. Math. Phys. (2011)
[85] Prabhu, K., The first law of black hole mechanics for fields with internal gauge freedom. Class. Quantum Gravity, 3 (2017) · Zbl 1358.83058
[86] Gomes, H.; Riello, A., The observer’s ghost: notes on a field space connection. J. High Energy Phys. (2017) · Zbl 1380.83020
[87] Gomes, H.; Hopfmüller, F.; Riello, A., A unified geometric framework for boundary charges and dressings: non-Abelian theory and matter. Nucl. Phys. B, 249-315 (2019) · Zbl 1415.81042
[88] Barnich, G.; Troessaert, C., Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited. Phys. Rev. Lett. (2010)
[89] Barnich, G.; Troessaert, C., Aspects of the BMS/CFT correspondence. J. High Energy Phys. (2010) · Zbl 1287.83043
[90] Barnich, G.; Troessaert, C., Supertranslations call for superrotations. PoS (2010)
[91] Barnich, G.; Troessaert, C., BMS charge algebra. J. High Energy Phys. (2011) · Zbl 1306.83002
[92] Barnich, G.; Troessaert, C., Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity. J. High Energy Phys. (2013) · Zbl 1342.83228
[93] Troessaert, C., Hamiltonian surface charges using external sources. J. Math. Phys., 5 (2016) · Zbl 1342.83019
[94] Wieland, W., Barnich-Troessaert bracket as a Dirac bracket on the covariant phase space. Class. Quantum Gravity, 2 (2022) · Zbl 1510.83036
[95] A spectral sequence associated with a nonlinear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints. Dokl. Akad. Nauk SSSR, 1028-1031 (1978)
[96] Vinogradov, A., The b-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory. J. Math. Anal. Appl., 1, 1-40 (1984) · Zbl 0548.58014
[97] Vinogradov, A., The b-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory. J. Math. Anal. Appl., 1, 41-129 (1984) · Zbl 0548.58015
[98] Tulczyjew, W. M., The Euler-Lagrange resolution, 22-48 · Zbl 0456.58012
[99] Vinogradov, A. M., On the Algebro-Geometric Foundations of Lagrangian Field Theory. Doklady Akademii Nauk, 284-287 (1977), Russian Academy of Sciences
[100] Anderson, I. M., Introduction to the Variational Bicomplex (1992) · Zbl 0772.58013
[101] Anderson, I. M.; Torre, C. G., Asymptotic conservation laws in field theory. Phys. Rev. Lett., 4109-4113 (1996) · Zbl 1042.70517
[102] Anderson, I. M.; Torre, C. G., Asymptotic conservation laws in classical field theory. Phys. Rev. Lett., 20, 4109 (1996) · Zbl 1042.70517
[103] Guillemin, V.; Sternberg, S., Symplectic Techniques in Physics (1990), Cambridge University Press · Zbl 0734.58005
[104] Brown, K. S., Cohomology of Groups (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0584.20036
[105] Tuynman, G.; Wiegerinck, W., Central extensions and physics. J. Geom. Phys., 2, 207-258 (1987) · Zbl 0649.58014
[106] Witten, E., Quantum field theory and the Jones polynomial. Commun. Math. Phys., 3, 351-399 (1988) · Zbl 0667.57005
[107] Dong, S.; Fradkin, E.; Leigh, R. G.; Nowling, S., Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids. J. High Energy Phys. (2008)
[108] Wong, G., A note on entanglement edge modes in Chern Simons theory. J. High Energy Phys. (2018) · Zbl 1396.81046
[109] Donnelly, W.; Wong, G., Entanglement branes, modular flow, and extended topological quantum field theory. J. High Energy Phys. (2019) · Zbl 1427.81154
[110] Blommaert, A.; Mertens, T. G.; Verschelde, H., Edge dynamics from the path integral — Maxwell and Yang-Mills. J. High Energy Phys. (2018) · Zbl 1404.81162
[111] Marsden, J.; Weinstein, A., Reduction of symplectic manifolds with symmetry. Rep. Math. Phys., 1, 121-130 (1974) · Zbl 0327.58005
[112] Bottacin, F.; Bottacin, F., A Marsden-Weinstein Reduction Theorem for Presymplectic Manifolds (2008) · Zbl 0945.53049
[113] Kostant, B.; Sternberg, S., Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras. Ann. Phys., 1, 49-113 (1987) · Zbl 0642.17003
[114] Freidel, L.; Oliveri, R.; Pranzetti, D.; Speziale, S., Extended corner symmetry, charge bracket and Einstein’s equations. J. High Energy Phys. (2021) · Zbl 1472.83012
[115] Bott, R.; Tu, L. W., Differential Forms in Algebraic Topology (1982), Springer · Zbl 0496.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.