×

Asymptotic symmetries in the BV-BFV formalism. (English) Zbl 1470.81051

A classical field theory on a manifold with boundary phrased in the BV-BFV formalism is described by two sets of data, one assigned to the bulk manifold and one to the boundary, together with an appropriate map between the two [A. S. Cattaneo et al., Commun. Math. Phys. 332, No. 2, 535–603 (2014; Zbl 1302.81141)]. To the bulk manifold \(M\) one associates BV data composed of a \((-1)\)-symplectic graded manifold \((\mathcal{F},\Omega)\), a degree 0 action functional \(S\) and an odd vector field \(Q\) on \(\mathcal{F}\) of degree 1 with the cohomological property \([Q, Q] = 0\). To the boundary \(\partial M\) one assigns BFV data composed of an exact (0)-symplectic graded manifold \((\mathcal{F}^\partial,\Omega^\partial=\delta\alpha^\partial)\), where \(\delta\) denotes the de Rham differential on the space of local forms, a degree 1 local action functional \(S^\partial\) on \(\mathcal{F}^\partial\) and an odd vector field \(Q^\partial\)on \(\mathcal{F}^\partial\) of degree 1 with the property: \([Q^\partial, Q^\partial] = 0\). The BV-BFV construction connects the BV data associated with the bulk to the BFV data associated with the boundary by means of a map \(\pi:\mathcal{F}\to\mathcal{F}^\partial\) together with the following relations \begin{align*} &\iota_Q\Omega=\delta S+\pi^*\alpha^\partial, &\frac{1}{2}\iota_Q\iota_Q\Omega=\pi^*S^\partial,\\ &\iota_{Q^\partial}\Omega^\delta=\delta S^\partial, &\iota_{Q^\partial}\iota_{Q^\partial}\Omega^\partial=0. \end{align*} In this paper, the authors show how one recovers the standard Noether analysis of surface charges from the BV-BFV picture, in field theories of BRST type such as electrodynamics (ED) whose symmetries are closed off-shell. The authors prove that \[ S^\partial[\Lambda]=\mathcal{Q}_N [\Lambda]+\mbox{higher\, antifield\, number}, \] where \(\mathcal{Q}_N [\Lambda]\) denotes the Noether charge associated to a (local) symmetry generated by a gauge parameter \(\Lambda\). The authors also discuss the extension of the BV-BFV formalism to corners, i.e., boundaries of the boundary, and higher codimension strata.
The authors study the asymptotic symmetries of ED considered as an abelian Yang-Mills theory [P. Mnev et al., Ann. Henri Poincaré 21, No. 3, 993–1044 (2020; Zbl 1433.81120)]. After introducing appropriate falloff conditions on fields, the authors compute the asymptotic charges. They also study the behavior of the symplectic structure of ED under large gauge transformations (LGT), i.e., transformations of the fields whose parameters have nonvanishing asymptotics. The authors argue that the failure of invariance of the canonical structure under LGT does not mean that LGT’s are not symmetries of the asymptotic structure [A. Herdegen, Lett. Math. Phys. 107, No. 8, 1439–1470 (2017; Zbl 1409.70015)] because from the viewpoint of BV-BFV the failure of invariance of \(\Omega^\partial\) is “expected” and fully consistent with the structure, if one appropriately takes into account the corner data.
The authors also study the free two-form model, which is dual to a free scalar field on-shell, and recover asymptotic charges for scalar field theory. While in the case of ED, the on-shell vanishing of the boundary action leads to the existence of a conserved quantity, the conservation of asymptotic charges for the scalar field is deduced from the vanishing of the boundary action for the dual theory. The authors also propose a modified duality between a scalar and a two-form model in order to compute asymptotic charges for scalar fields when sources are added. Finally, the authors argue that constant shifts and (dually) symmetries generated by closed but not exact forms do not yield a BV structure.

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
81T32 Matrix models and tensor models for quantum field theory
53D05 Symplectic manifolds (general theory)
58A50 Supermanifolds and graded manifolds
81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] Anderson, I.M.: The variational bicomplex. Unfinished book, http://deferentialgeometry.org/papers/The · Zbl 0772.58013
[2] Ashtekar, A.; Sen, A., On the role of space-time topology in quantum phenomena: superselection of charge and emergence of nontrivial vacua, J. Math. Phys., 21, 3, 526-533 (1980)
[3] Ashtekar, A.; Streubel, M., Symplectic geometry of radiative modes and conserved quantities at null infinity, Proc. R. Soc. Lond. Math. Phys. Sci., 376, 1767, 585-607 (1981)
[4] Ashtekar, A., Asymptotic quantization of the gravitational field, Phys. Rev. Lett., 46, 9, 573 (1981)
[5] Ashtekar, A.: Quantization of the radiative modes of the gravitational field. In: Quantum Gravity II, p. 416 (1981)
[6] Ashtekar, A., Radiative degrees of freedom of the gravitational field in exact general relativity, J. Math. Phys., 22, 12, 2885-2895 (1981)
[7] Ashtekar, A., Asymptotic Quantization: Based on 1984 Naples Lectures (1987), Berkeley: Bibliopolis, Berkeley · Zbl 0621.53064
[8] Bastiani, A., Applications différentiables et variétés différentiables de dimension infinie, Journal d’Analyse mathématique, 13, 1, 1-114 (1964) · Zbl 0196.44103
[9] Bonechi, F.; Cattaneo, AS; Mnev, P., The Poisson sigma model on closed surfaces, J. High Energy Phys., 2012, 1, 99 (2012) · Zbl 1306.81290
[10] Bonora, L.; Cotta-Ramusino, P., Some remarks on brs transformations, anomalies and the cohomology of the lie algebra of the group of gauge transformations, Commun. Math. Phys., 87, 4, 589-603 (1983) · Zbl 0521.53064
[11] Bonora, L.; Cotta-Ramusino, P.; Rinaldi, M.; Stasheff, J., The evaluation map in field theory, sigma-models and strings-II, Commun. Math. Phys., 114, 3, 381-437 (1988) · Zbl 0655.53069
[12] Brouder, C., Dang, N.V., Laurent-Gengoux, C., Rejzner, K.: Properties of field functionals and characterization of local functionals. J. Math. Phys. 59(2), 023508 (2018). arXiv:math-ph/1705.01937 · Zbl 1456.81296
[13] Batalin, IA; Fradkin, ES, A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. B, 122, 2, 157-164 (1983) · Zbl 0967.81508
[14] Bott, R.; Tu, LW, Differential Forms in Algebraic Topology (2013), Berlin: Springer, Berlin · Zbl 0496.55001
[15] Buchholz, DA, Gauss’ law and the infraparticle problem, Phys. Lett. B, 174, 331-334 (1986)
[16] Batalin, IA; Vilkovisky, GA, Relativistic \(s\)-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B, 69, 3, 309-312 (1977)
[17] Batalin, IA; Vilkovisky, GA, Gauge algebra and quantization, Phys. Lett. B, 102, 1, 27-31 (1981)
[18] Campiglia, M., Null to time-like infinity Green’s functions for asymptotic symmetries in Minkowski spacetime, J. High Energy Phys., 2015, 11, 160 (2015) · Zbl 1388.81297
[19] Campiglia, M.; Coito, L., Asymptotic charges from soft scalars in even dimensions, Phys. Rev. D, 97, 6, 066009 (2018)
[20] Campiglia, M.; Coito, L.; Mizera, S., Can scalars have asymptotic symmetries?, Phys. Rev. D, 97, 4, 046002 (2018)
[21] Canepa, G., Cattaneo, A.S., Schiavina, M.: General relativity and the aksz construction. arXiv:2006.13078 (2020)
[22] Cattaneo, A., Canepa, G., Schiavina, M.: Boundary structure of general relativity in tetrad variables. arXiv:2001.11004 math-ph (2020)
[23] Campiglia, M.; Eyheralde, R., Asymptotic \(U(1)\) charges at spatial infinity, J. High Energy Phys., 2017, 11, 168 (2017) · Zbl 1383.81127
[24] Campiglia, M.; Freidel, L.; Hopfmueller, F.; Soni, RM, Scalar asymptotic charges and dual large gauge transformations, J. High Energy Phys., 2019, 4, 3 (2019) · Zbl 1415.81106
[25] Campiglia, M.; Laddha, A., Asymptotic symmetries and subleading soft graviton theorem, Phys. Rev. D, 90, 12, 124028 (2014)
[26] Campiglia, M.; Laddha, A., Subleading soft photons and large gauge transformations, J. High Energy Phys., 11, 2016 (2016) · Zbl 1390.83138
[27] Campiglia, M.; Laddha, A., Asymptotic symmetries of QED and Weinberg’s soft photon theorem, J. High Energy Phys., 2015, 7, 115 (2015) · Zbl 1388.83199
[28] Cattaneo, AS; Mnev, P., Wave relations, Commun. Math. Phys., 332, 3, 1083-1111 (2014) · Zbl 1300.53069
[29] Cattaneo, AS; Mnev, P.; Reshetikhin, N., Classical BV theories on manifolds with boundary, Commun. Math. Phys., 332, 2, 535-603 (2014) · Zbl 1302.81141
[30] Cattaneo, AS; Mnev, P.; Reshetikhin, N., Perturbative quantum gauge theories on manifolds with boundary, Commun. Math. Phys., 357, 2, 631-730 (2018) · Zbl 1390.81381
[31] Cattaneo, AS; Mnev, P.; Reshetikhin, N., A cellular topological field theory, Commun. Math. Phys., 374, 2, 1229-1320 (2020) · Zbl 1514.81235
[32] Cattaneo, AS; Mnev, P.; Wernli, K., Split Chern-Simons Theory in the BV-BFV Formalism, 293-324 (2017), Cham: Springer, Cham · Zbl 1378.81069
[33] Cattaneo, AS; Moshayedi, N.; Wernli, K., Globalization for perturbative quantization of nonlinear split AKSZ sigma models on manifolds with boundary, Commun. Math. Phys., 372, 1, 213-260 (2019) · Zbl 1430.58007
[34] Cattaneo, AS; Schiavina, M., BV-BFV approach to general relativity: Einstein-Hilbert action, J. Math. Phys., 57, 2, 023515 (2016) · Zbl 1336.83007
[35] Canepa, G., Schiavina, M.: Fully extended BV-BFV description of general relativity in three dimensions. arXiv:1905.09333 (2019)
[36] Cattaneo, AS; Schiavina, M., BV-BFV approach to general relativity: Palatini-Cartan-Holst action, Adv. Theor. Math. Phys., 23, 8, 2025-2059 (2019) · Zbl 07432488
[37] Cattaneo, AS; Schiavina, M., The reduced phase space of Palatini-Cartan-Holst theory, Annales Henri Poincaré, 20, 445-480 (2019) · Zbl 1411.83009
[38] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, J. High Energy Phys., 9, 1-45 (2016) · Zbl 1390.83016
[39] Dybalski, W.; Wegener, B., Asymptotic charges, large gauge transformations and inequivalence of different gauges in external current QED, J. High Energy Phys., 2019, 11, 126 (2019) · Zbl 1429.81102
[40] Dybalski, W., From Faddeev-Kulish to LSZ. Towards a non-perturbative description of colliding electrons, Nuclear Phys. B, 925, 455-469 (2017) · Zbl 1375.81239
[41] Fredenhagen, K.; Rejzner, K., Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory, Commun. Math. Phys., 317, 3, 697-725 (2012) · Zbl 1263.81245
[42] Fredenhagen, K.; Rejzner, K., Batalin-Vilkovisky formalism in the functional approach to classical field theory, Commun. Math. Phys., 314, 1, 93-127 (2012) · Zbl 1418.70034
[43] Herdegen, A., Long range effects in asymptotic fields and angular momentum of classical field electrodynamics, J. Math. Phys., 36, 4044-4086 (1995) · Zbl 0846.35136
[44] Herdegen, A., Asymptotic algebra for charged particles and radiation, JMP, 37, 100 (1996) · Zbl 0904.46049
[45] Herdegen, A., Asymptotic algebra for charged particles and radiation, J. Math. Phys., 37, 1, 100-120 (1996) · Zbl 0904.46049
[46] Herdegen, A., Semidirect product of CCR and CAR algebras and asymptotic states in quantum electrodynamics, J. Math. Phys., 39, 4, 1788 (1998) · Zbl 1001.81046
[47] Herdegen, A., Asymptotic algebra of quantum electrodynamics, Acta Phys. Polon. B, 36, 35-58 (2005) · Zbl 1066.81044
[48] Herdegen, A., Infrared limit in external field scattering, J. Math. Phys., 53, 5, 052306 (2012) · Zbl 1275.81092
[49] Herdegen, A., Asymptotic structure of electrodynamics revisited, Lett. Math. Phys., 107, 8, 1439-1470 (2017) · Zbl 1409.70015
[50] He, T.; Lysov, V.; Mitra, P.; Strominger, A., BMS supertranslations and Weinberg’s soft graviton theorem, J. High Energy Phys., 2015, 5, 151 (2015) · Zbl 1388.83261
[51] He, T.; Mitra, P.; Porfyriadis, AP; Strominger, A., New symmetries of massless QED, J. High Energy Phys., 2014, 10, 112 (2014)
[52] Iraso, R.; Mnev, P., Two-dimensional Yang-Mills theory on surfaces with corners in Batalin-Vilkovisky formalism, Commun. Math. Phys., 370, 2, 637-702 (2019) · Zbl 1421.81085
[53] Iyer, V.; Wald, RM, Some properties of the noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D, 50, 846-864 (1994)
[54] Kriegl, A.; Michor, PW, The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs (1997), Providence: AMS, Providence · Zbl 0889.58001
[55] Kapec, D.; Pate, M.; Strominger, A., New symmetries of qed, Adv. Theor. Math. Phys., 21, 7, 1769-1785 (2017) · Zbl 1383.81351
[56] Morchio, G.; Strocchi, F., Infrared Problem, Higgs Phenomenon and Long Range Interactions, 301-344 (1986), Berlin: Springer, Berlin
[57] Mnev, P.; Schiavina, M.; Wernli, K., Towards holography in the BV-BFV setting, Annales Henri Poincare, 21, 2, 993-1044 (2019) · Zbl 1433.81120
[58] Mañes, J.; Stora, R.; Zumino, B., Algebraic study of chiral anomalies, Commun. Math. Phys., 102, 1, 157-174 (1985) · Zbl 0573.53054
[59] Neeb, K., Towards a Lie theory for infinite-dimensional groups, Jpn. J. Math., 1, 2, 291-468 (2006) · Zbl 1161.22012
[60] Oliveri, R., Speziale, S.: Boundary effects in general relativity with tetrad variables (2019) · Zbl 1468.83009
[61] Rejzner, K., Perturbative Algebraic Quantum Field Theory. An introduction for Mathematicians (2016), Berlin: Springer, Berlin · Zbl 1347.81011
[62] Schwarz, A., Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys., 155, 2, 249-260 (1993) · Zbl 0786.58017
[63] Schätz, F., BFV-complex and higher homotopy structures, Commun. Math. Phys., 286, 2, 399 (2009) · Zbl 1177.53077
[64] Schiavina, M.: BV-BFV approach to general relativity. 2016. Ph.D. Thesis, University of Zurich, https://www.zora.uzh.ch/id/eprint/122803/ · Zbl 1336.83007
[65] Staruszkiewicz, AJ, Quantum mechanics of the electric charge, NATO Sci. Ser. B, 366, 179-185 (1998) · Zbl 0925.81010
[66] Staruszkiewicz, A., Quantum mechanics of the electric charge, Acta Physica Polonica B, 30, 3, 835 (1999)
[67] Staruszkiewicz, A., Physics of the electric charge, Acta Phys. Polon., 33, 2041-2048 (2002)
[68] Staruszkiewicz, A., Quantum mechanics of phase and charge and quantization of the Coulomb field, Ann. Phys., 190, 2, 354-372 (2013)
[69] Weinberg, S., Infrared photons and gravitons, Phys. Rev., 140, 2, B516 (1965)
[70] Zumino, B., Cohomology of gauge groups: cocycles and Schwinger terms, Nuclear Phys. B, 253, 477-493 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.