×

Interface contributions to topological entanglement in abelian Chern-Simons theory. (English) Zbl 1382.58019

Summary: We study the entanglement entropy between (possibly distinct) topological phases across an interface using an abelian Chern-Simons description with topological boundary conditions (TBCs) at the interface. From a microscopic point of view, these TBCs correspond to turning on particular gapping interactions between the edge modes across the interface. However, in studying entanglement in the continuum Chern-Simons description, we must confront the problem of non-factorization of the Hilbert space, which is a standard property of gauge theories. We carefully define the entanglement entropy by using an extended Hilbert space construction directly in the continuum theory. We show how a given TBC isolates a corresponding gauge invariant state in the extended Hilbert space, and hence compute the resulting entanglement entropy. We find that the sub-leading correction to the area law remains universal, but depends on the choice of topological boundary conditions. This agrees with the microscopic calculation of [J. Cano, T. L. Hughes and M. Mulligan, “Interactions along an entanglement cut in 2+1D abelian topological phases”, Phys. Rev. B (3) 92, No. 7, Article ID 075104, 31 p. (2015; doi:10.1103/PhysRevB.92.075104)]. Additionally, we provide a replica path integral calculation for the entropy. In the case when the topological phases across the interface are taken to be identical, our construction gives a novel explanation of the equivalence between the left-right entanglement of (1+1)d Ishibashi states and the spatial entanglement of (2+1)d topological phases.

MSC:

58J28 Eta-invariants, Chern-Simons invariants
81T45 Topological field theories in quantum mechanics
81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] J. Cano, T.L. Hughes and M. Mulligan, Interactions along an entanglement cut in 2 + 1D abelian topological phases, Phys. Rev.B 92 (2015) 075104 [arXiv:1411.5369] [INSPIRE].
[2] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett.96 (2006) 110405 [INSPIRE]. · doi:10.1103/PhysRevLett.96.110405
[3] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett.96 (2006) 110404 [hep-th/0510092] [INSPIRE]. · doi:10.1103/PhysRevLett.96.110404
[4] A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons theory, Nucl. Phys.B 845 (2011) 393 [arXiv:1008.0654] [INSPIRE]. · Zbl 1207.81060 · doi:10.1016/j.nuclphysb.2010.12.017
[5] J. Wang and X.-G. Wen, A lattice non-perturbative hamiltonian construction of 1 + 1D anomaly-free chiral fermions and bosons — On the equivalence of the anomaly matching conditions and the boundary fully gapping rules, arXiv:1307.7480 [INSPIRE].
[6] P.V. Buividovich and M.I. Polikarpov, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett.B 670 (2008) 141 [arXiv:0806.3376] [INSPIRE]. · Zbl 1190.81090 · doi:10.1016/j.physletb.2008.10.032
[7] W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev.D 85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].
[8] R.M. Soni and S.P. Trivedi, Aspects of entanglement entropy for gauge theories, JHEP01 (2016) 136 [arXiv:1510.07455] [INSPIRE]. · Zbl 1388.81088
[9] W. Donnelly, Entanglement entropy and non-Abelian gauge symmetry, Class. Quant. Grav.31 (2014) 214003 [arXiv:1406.7304] [INSPIRE]. · Zbl 1304.81121
[10] W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP09 (2016) 102 [arXiv:1601.04744] [INSPIRE]. · Zbl 1390.83016 · doi:10.1007/JHEP09(2016)102
[11] S. Ghosh, R.M. Soni and S.P. Trivedi, On the entanglement entropy for gauge theories, JHEP09 (2015) 069 [arXiv:1501.02593] [INSPIRE]. · Zbl 1388.81438 · doi:10.1007/JHEP09(2015)069
[12] H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev.D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].
[13] H. Casini and M. Huerta, Entanglement entropy for a Maxwell field: numerical calculation on a two dimensional lattice, Phys. Rev.D 90 (2014) 105013 [arXiv:1406.2991] [INSPIRE].
[14] W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett.114 (2015) 111603 [arXiv:1412.1895] [INSPIRE]. · doi:10.1103/PhysRevLett.114.111603
[15] W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev.D 94 (2016) 104053 [arXiv:1506.05792] [INSPIRE].
[16] X.L. Qi, H. Katsura, and A.W.W. Ludwig, General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states, Phys. Rev. Lett.108 (2012) 196402.
[17] D. Das and S. Datta, Universal features of left-right entanglement entropy, Phys. Rev. Lett.115 (2015) 131602 [arXiv:1504.02475] [INSPIRE]. · Zbl 1339.81086
[18] X. Wen, S. Matsuura and S. Ryu, Edge theory approach to topological entanglement entropy, mutual information and entanglement negativity in Chern-Simons theories, Phys. Rev.B 93 (2016) 245140 [arXiv:1603.08534] [INSPIRE]. · Zbl 1142.81363
[19] J. Fuchs, M.R. Gaberdiel, I. Runkel and C. Schweigert, Topological defects for the free boson CFT, J. Phys.A 40 (2007) 11403 [arXiv:0705.3129] [INSPIRE]. · Zbl 1142.81363
[20] K. Sakai and Y. Satoh, Entanglement through conformal interfaces, JHEP12 (2008) 001 [arXiv:0809.4548] [INSPIRE]. · Zbl 1329.81335 · doi:10.1088/1126-6708/2008/12/001
[21] M. Gutperle and J.D. Miller, A note on entanglement entropy for topological interfaces in RCFTs, JHEP04 (2016) 176 [arXiv:1512.07241] [INSPIRE].
[22] E.M. Brehm, I. Brunner, D. Jaud and C. Schmidt-Colinet, Entanglement and topological interfaces, Fortsch. Phys.64 (2016) 516 [arXiv:1512.05945] [INSPIRE]. · Zbl 1339.81086 · doi:10.1002/prop.201600024
[23] S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys.B 326 (1989) 108 [INSPIRE]. · doi:10.1016/0550-3213(89)90436-7
[24] T. Andrade, J.I. Jottar and R.G. Leigh, Boundary conditions and unitarity: the Maxwell-Chern-Simons system in AdS3/CF T2, JHEP05 (2012) 071 [arXiv:1111.5054] [INSPIRE]. · Zbl 1348.83058 · doi:10.1007/JHEP05(2012)071
[25] A. Agarwal, D. Karabali and V.P. Nair, Gauge-invariant variables and the entanglement entropy, arXiv:1701.00014 [INSPIRE]. · Zbl 1151.81358
[26] J. Wang and X.-G. Wen, Boundary degeneracy of topological order, Phys. Rev.B 91 (2015) 125124 [arXiv:1212.4863] [INSPIRE]. · doi:10.1103/PhysRevB.91.125124
[27] M. Levin, Protected edge modes without symmetry, Phys. Rev.X 3 (2013) 021009 [arXiv:1301.7355] [INSPIRE].
[28] M. Levin and A. Stern, Fractional topological insulators, Phys. Rev. Lett.103 (2009) 196803 [arXiv:0906.2769] [INSPIRE]. · doi:10.1103/PhysRevLett.103.196803
[29] C. Wang and M. Levin, Weak symmetry breaking in two dimensional topological insulators, Phys. Rev.B 88 (2013) 245136 [arXiv:1311.0767] [INSPIRE]. · doi:10.1103/PhysRevB.88.245136
[30] M. Levin, F.J. Burnell, M. Koch-Janusz and A. Stern, Exactly soluble models for fractional topological insulators in 2 and 3 dimensions, Phys. Rev.B 84 (2011) 235145 [arXiv:1108.4954] [INSPIRE]. · doi:10.1103/PhysRevB.84.235145
[31] M. Levin and A. Stern, Classification and analysis of two dimensional abelian fractional topological insulators, Phys. Rev.B 86 (2012) 115131 [arXiv:1205.1244] [INSPIRE]. · doi:10.1103/PhysRevB.86.115131
[32] F.D.M. Haldane, Stability of chiral Luttinger liquids and abelian quantum Hall states, Phys. Rev. Lett.74 (1995) 2090 [cond-mat/9501007] [INSPIRE].
[33] R. Mukhopadhyay, C. Kane and T. Lubensky, Sliding Luttinger liquid phases, Phys. Rev.B 64 (2001) 045120.
[34] C. Kane, R. Mukhopadhyay and T. Lubensky, Fractional quantum Hall effect in an array of quantum wires, Phys. Rev. Lett.88 (2002) 036401.
[35] J.C. Teo and C. Kane, From Luttinger liquid to non-abelian quantum Hall states, Phys. Rev.B 89 (2014) 085101.
[36] S. Dong, E. Fradkin, R.G. Leigh and S. Nowling, Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids, JHEP05 (2008) 016 [arXiv:0802.3231] [INSPIRE]. · doi:10.1088/1126-6708/2008/05/016
[37] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys.121 (1989) 351 [INSPIRE]. · Zbl 0726.57010
[38] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in Contemporary Physics, Srpinger, Germany (1997). · Zbl 0869.53052
[39] G.W. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett.B 220 (1989) 422 [INSPIRE]. · doi:10.1016/0370-2693(89)90897-6
[40] W. Donnelly and G. Wong, Entanglement branes in a two-dimensional string theory, arXiv:1610.01719 [INSPIRE]. · Zbl 1382.81156
[41] N. Ishibashi, The boundary and crosscap states in conformal field theories, Mod. Phys. Lett.A 4 (1989) 251 [INSPIRE]. · Zbl 1329.81335
[42] M.R. Gaberdiel, D-branes from conformal field theory, Fortsch. Phys.50 (2002) 783 [hep-th/0201113] [INSPIRE]. · Zbl 1008.81079 · doi:10.1002/1521-3978(200209)50:8/9<783::AID-PROP783>3.0.CO;2-J
[43] M. Blau and G. Thompson, Topological gauge theories of antisymmetric tensor fields, Annals Phys.205 (1991) 130 [INSPIRE]. · Zbl 0739.53060 · doi:10.1016/0003-4916(91)90240-9
[44] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE]. · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[45] T. Faulkner, Bulk emergence and the RG flow of entanglement entropy, JHEP05 (2015) 033 [arXiv:1412.5648] [INSPIRE]. · Zbl 1388.81117 · doi:10.1007/JHEP05(2015)033
[46] T.L. Hughes, R.G. Leigh, O. Parrikar and S.T. Ramamurthy, Entanglement entropy and anomaly inflow, Phys. Rev.D 93 (2016) 065059 [arXiv:1509.04969] [INSPIRE].
[47] J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys.B 324 (1989) 581 [INSPIRE].
[48] J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE]. · Zbl 1246.81318
[49] D. Mumford, TATA lectures on Theta. I, Progress in Mathematics volume 28, Springer, Germany (1983). · Zbl 0509.14049
[50] D.B. Ray and I.M. Singer, Analytic torsion for complex manifolds, Ann. Math.98 (1973) 154 [INSPIRE]. · Zbl 0267.32014 · doi:10.2307/1970909
[51] A.S. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys.2 (1978) 247 [INSPIRE]. · Zbl 0383.70017 · doi:10.1007/BF00406412
[52] E. Elizalde, M. Lygren and D.V. Vassilevich, Antisymmetric tensor fields on spheres: functional determinants and nonlocal counterterms, J. Math. Phys.37 (1996) 3105 [hep-th/9602113] [INSPIRE]. · Zbl 0863.58071 · doi:10.1063/1.531558
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.