×

On critical \(N\)-Kirchhoff type equations involving Trudinger-Moser nonlinearity. (English) Zbl 1529.35243


MSC:

35J62 Quasilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35B33 Critical exponents in context of PDEs
Full Text: DOI

References:

[1] PohožaevSI. On the eigenfunctions of the equation \(\operatorname{\Delta} u + \lambda f(u) = 0\). Dokl Akad Nauk SSSR. 1965;165:36‐39.
[2] TrudingerNS. On imbeddings into Orlicz spaces and some applications. J Math Mech. 1967;17:473‐483. · Zbl 0163.36402
[3] MoserJ. A sharp form of an inequality by N. Trudinger. Indiana Univ Math J. 1970;20:1077‐1092. · Zbl 0213.13001
[4] KirchhoffG. Mechanik. Leipzig: Teubner; 1883.
[5] Woinowsky‐KriegerS. The effect of an axial force on the vibration of hinged bars. J Appl Mech. 1950;17:35‐36. · Zbl 0036.13302
[6] ArosioA. A geometrical nonlinear correction to the Timoshenko beam equation; 2001:729‐740. · Zbl 1042.74531
[7] ChenST, ZhangBL, TangXH. Existence and non‐existence results for Kirchhoff‐type problems with convolution nonlinearity.Adv Nonlinear Anal. 2020;9(1):148‐167. · Zbl 1421.35100
[8] QinDD, LiaoFF, HeYB, TangXH. Infinitely many sign‐changing solutions for Kirchhoff‐type equations in \(\mathbb{R}^3\). Bull Malays Math Sci Soc. 2019;42(3):1055‐1070. · Zbl 1419.35043
[9] PucciP, RădulescuVD. Progress in nonlinear Kirchhoff problems [Editorial]. Nonlinear Anal. 2019;186:1‐5. · Zbl 1476.00078
[10] ZhangYP, TangXH, ZhangJ. Existence and multiplicity of solutions for Kirchhoff type equations involving fractional p‐Laplacian without compact condition. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM. 2019;113(4):3147‐3167. · Zbl 1427.35065
[11] LionsJL. On some questions in boundary value problems of mathematical physics. North‐Holland Math. Stud., Vol. 30: North‐Holland, Amsterdam‐New York; 1978:284‐346. · Zbl 0404.35002
[12] do ÓJM. Semilinear Dirichlet problems for the N‐Laplacian in \(\mathbb{R}^N\) with nonlinearities in the critical growth range. Differ Integr Equ. 1996;9(5):967‐979. · Zbl 0858.35043
[13] do ÓJM. N‐Laplacian equations in \(\mathbb{R}^N\) with critical growth. Abstr Appl Anal. 1997;2(3‐4):301‐315. · Zbl 0932.35076
[14] do ÓJM, MedeirosE, SeveroU. On a quasilinear nonhomogeneous elliptic equation with critical growth in \(\mathbb{R}^N\). J Differ Equ. 2009;246(4):1363‐1386. · Zbl 1159.35027
[15] TangXH, ChengBT. Ground state sign‐changing solutions for Kirchhoff type problems in bounded domains. J Differ Equ. 2016;261(4):2384‐2402. · Zbl 1343.35085
[16] TangXH, ChenST. Ground state solutions of Nehari‐Pohozaev type for Kirchhoff‐type problems with general potentials. Calc Var Partial Differ Equ. 2017;56(4):110, 25. · Zbl 1376.35056
[17] XiangMQ, RădulescuVD, ZhangBL. Fractional Kirchhoff problems with critical Trudinger‐Moser nonlinearity. Calc Var Partial Differ Equ. 2019;58(2):57, 27. · Zbl 1407.35216
[18] CaoDM. Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb{R}^2\). Comm Partial Differ Equ. 1992;17(3‐4):407‐435. · Zbl 0763.35034
[19] Adimurthi, SandeepK. A singular Moser‐Trudinger embedding and its applications. NoDEA Nonlinear Differ Equ Appl. 2007;13(5‐6):585‐603. · Zbl 1171.35367
[20] Adimurthi, YangYY. Multibubble analysis on N‐Laplace equation in \(\mathbb{R}^N\). Calc Var Partial Differ Equ. 2011;40(1‐2):1‐14. · Zbl 1205.35132
[21] de FigueiredoDG, MiyagakiOH, RufB. Elliptic equations in \(\mathbb{R}^2\) with nonlinearities in the critical growth range. Calc Var Partial Differ Equ. 1995;3(2):139‐153. · Zbl 0820.35060
[22] ChenST, TangXH. Axially symmetric solutions for the planar Schrödinger‐Poisson system with critical exponential growth. J Differ Equ. 2020;269(11):9144‐9174. · Zbl 1448.35160
[23] Adimurthi. Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n‐Laplacian. Ann Scuola Norm Sup Pisa Cl Sci (4). 1990;17(3):393‐413. · Zbl 0732.35028
[24] PandaR. Nontrivial solution of a quasilinear elliptic equation with critical growth in \(\mathbb{R}^n\). Proc Indian Acad Sci Math Sci. 1995;105(4):425‐444. · Zbl 0854.35035
[25] LamN, LuGZ. N‐Laplacian equations in \(\mathbb{R}^N\) with subcritical and critical growth without the Ambrosetti‐Rabinowitz condition. Adv Nonlinear Stud. 2013;13(2):289‐308. · Zbl 1283.35049
[26] MasmoudiN, SaniF. Trudinger‐Moser inequalities with the exact growth condition in \(\mathbb{R}^N\) and applications. Comm Partial Differ Equ. 2015;40(8):1408‐1440. · Zbl 1345.46031
[27] LamN, LuGZ. Existence and multiplicity of solutions to equations of N‐Laplacian type with critical exponential growth in \(\mathbb{R}^N\). J Funct Anal. 2012;262(3):1132‐1165. · Zbl 1236.35050
[28] ZhangGQ, ZhangWG, LiuSY. Existence result for a class of N‐Laplacian equations involving critical growth. Acta Math Sci Ser B (Engl Ed). 2017;37(5):1348‐1360. · Zbl 1399.35168
[29] AroraR, GiacomoniJ, MukherjeeT, SreenadhK. n‐Kirchhoff‐Choquard equations with exponential nonlinearity. Nonlinear Anal. 2019;186:113‐144. · Zbl 1418.35355
[30] de AraujoALA, FariaLFO. Existence, nonexistence, and asymptotic behavior of solutions for n‐laplacian equations involving critical exponential growth in the whole \(\mathbb{R}^n\). https://arxiv.org/abs/2009.03845v1; 2020.
[31] do ÓJM, MishraPK, MoameniA. Supercritical problems with concave and convex nonlinearities in \(\mathbb{R}^N\). Commun Contemp Math. 2021;23(6):2050052, 18. · Zbl 1472.35192
[32] ChenST, TangXH, WeiJY. Improved results on planar Kirchhoff‐type elliptic problems with critical exponential growth. Z Angew Math Phys. 2021;72(1):38. · Zbl 1466.35184
[33] GoyalS, MishraPK, SreenadhK. n‐Kirchhoff type equations with exponential nonlinearities. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM. 2016;110(1):219‐245. · Zbl 1368.35099
[34] FigueiredoGM, SeveroUB. Ground state solution for a Kirchhoff problem with exponential critical growth. Milan J Math. 2016;84(1):23‐39. · Zbl 1348.35064
[35] LionsPL. The concentration‐compactness principle in the calculus of variations. The limit case. I. Rev Mat Iberoamericana. 1985;1(1):145‐201. · Zbl 0704.49005
[36] WillemM. Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Boston, MA: Birkhäuser Boston, Inc.; 1996. · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.