×

Existence and multiplicity of solutions for Kirchhoff type equations involving fractional \(p\)-Laplacian without compact condition. (English) Zbl 1427.35065

Summary: The purpose of this paper is mainly to investigate the following fractional Kirchhoff equation in \(\mathbb{R}^N\) \[ \left(a+b\iint _{\mathbb{R}}^{2N}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}\text{d}x\text{d}y\right) ^{p-1} (-\Delta )^s_p u+\lambda V(x)|u|^{p-2}u=f(x,u),\] where \(0<s<1\), \(2\le p<\infty\), \( a,b>0\) are constants, \(\lambda\) is a parameter, \(V\) is sign-changing potential function satisfying some assumptions which may not guarantee the compactness of the corresponding Sobolev embedding. Under some suitable conditions, we prove the existence and multiplicity of nontrivial solutions by applying some new tricks for the above equation.

MSC:

35J60 Nonlinear elliptic equations
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Applebaum, D.: Lévy processes-from probability to finance quantum groups. Not. Am. Math. Soc. 51, 1336-1347 (2004) · Zbl 1053.60046
[2] Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \[{\mathbb{R}}^N\] RN. J. Differ. Equ. 255, 2340-2362 (2013) · Zbl 1284.35171 · doi:10.1016/j.jde.2013.06.016
[3] Barrios, B., Colorado, E., De Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133-6162 (2012) · Zbl 1245.35034 · doi:10.1016/j.jde.2012.02.023
[4] Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1-21 (2001) · Zbl 1076.35037 · doi:10.1142/S0219199701000494
[5] Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \[{\mathbb{R}}^N\] RN. Commun. Partial Differ. Equ. 20, 1725-1741 (1995) · Zbl 0837.35043 · doi:10.1080/03605309508821149
[6] Caffarelli, L.: Nonlocal equations, drifts and games. Nonlinear Partial Differ. Equ. Abel Symp. 7, 37-52 (2012) · Zbl 1266.35060 · doi:10.1007/978-3-642-25361-4_3
[7] Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41, 203-240 (2011) · Zbl 1357.49143 · doi:10.1007/s00526-010-0359-6
[8] Chang, X., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479-494 (2013) · Zbl 1276.35080 · doi:10.1088/0951-7715/26/2/479
[9] Chen, W.: Multiplicity of solutions for a fractional Kirchhoff type problem. Commun. Pure Appl. Anal. 14, 2009-2020 (2015) · Zbl 1328.35273 · doi:10.3934/cpaa.2015.14.2009
[10] Cheng, B.T., Tang, X.H.: New existence of solutions for the fractional \[p\] p-Laplacian equations with sign-changing potential and nonlinearity. Mediterr. J. Math. 13, 3373-3387 (2016) · Zbl 1488.35554 · doi:10.1007/s00009-016-0691-y
[11] Chen, S.T., Tang, X.H.: Improved results for Klein-Gordon-Maxwell systems with general nonlinearity. Disc. Contin. Dyn. Syst. 38, 2333-2348 (2018) · Zbl 1398.35026 · doi:10.3934/dcds.2018096
[12] Chen, S.T., Tang, X.H.: Geometrically distinct solutions for Klein-Gordon-Maxwell systems with superlinear nonlinearities. Appl. Math. Lett. 90, 188-193 (2019) · Zbl 1411.35105 · doi:10.1016/j.aml.2018.11.007
[13] Chen, S.T., Tang, X.H.: Ground state solutions of Schrödinger-Poisson systems with variable potential and convolution nonlinearity. J. Math. Anal. Appl. 473, 87-111 (2019) · Zbl 1412.35114 · doi:10.1016/j.jmaa.2018.12.037
[14] Ding, Y.H., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29, 397-419 (2007) · Zbl 1119.35082 · doi:10.1007/s00526-006-0071-8
[15] Franzina, G., Palatucci, G.: Fractional \[p\] p-eigenvalues. Riv. Mat. Univ. Parma 5, 315-328 (2014) · Zbl 1327.35286
[16] Ferrara, M., Molica Bisci, G., Zhang, B.L.: Existence of weak solutions for non-local fractional problems via Morse theory. Discret. Contin. Dyn. Syst. Ser. B 19, 2483-2499 (2014) · Zbl 1310.35238 · doi:10.3934/dcdsb.2014.19.2483
[17] Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156-170 (2014) · Zbl 1283.35156 · doi:10.1016/j.na.2013.08.011
[18] Guo, Y.X., Nie, J.J.: Existence and multiplicity of nontrivial solutions for \[p\] p-Laplacian Schrödinger-Kirchhoff-type equations. J. Math. Anal. Appl. 428, 1054-1069 (2015) · Zbl 1318.35021 · doi:10.1016/j.jmaa.2015.03.064
[19] Iannizzotto, A., Liu, S., Perera, K., Squassina, M.: Existence results for fractional \[p\] p-Laplacian problems via Morse theory. Adv. Calc. Var. 9, 101-125 (2016) · Zbl 1515.35318 · doi:10.1515/acv-2014-0024
[20] Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[21] Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002) · doi:10.1103/PhysRevE.66.056108
[22] Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795-826 (2014) · Zbl 1292.35193 · doi:10.1007/s00526-013-0600-1
[23] Molica Bisci, G.: Fractional equations with bounded primitive. Appl. Math. Lett. 27, 53-58 (2014) · Zbl 1323.35200 · doi:10.1016/j.aml.2013.07.011
[24] Molica Bisci, G., Servadei, R.: A bifurcation result for non-local fractional equations. Anal. Appl. 13, 371-394 (2015) · Zbl 1328.35280 · doi:10.1142/S0219530514500067
[25] Molica Bisci, G.: Sequence of weak solutions for fractional equations Math. Res. Lett. 21, 241-53 (2014) · Zbl 1298.35239
[26] Metzler, R., Klafter, J.: The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161-208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[27] Nyamoradi, N.: Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 18, 489-502 (2013) · Zbl 1279.49007
[28] Nyamoradi, N., Zaidan, L.I.: Existence and multiple of solutions for fractional \[p\] p-Laplacian Schrödinger-Kirchoff type equations. Complex Var. Elliptic Equ. 63, 346-359 (2018) · Zbl 1390.35403 · doi:10.1080/17476933.2017.1310851
[29] Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[30] Nie, J.J.: Existence and multiplicity of nontrivial solutions for a class of Schrödinger-Kirchhoff-type equations. J. Math. Anal. Appl. 417, 65-79 (2014) · Zbl 1312.35102 · doi:10.1016/j.jmaa.2014.03.027
[31] Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \[{\mathbb{R}}^N\] RN involving nonlocal operators. Rev. Mat. Iberoam. 32, 1-22 (2016) · Zbl 1405.35045 · doi:10.4171/RMI/879
[32] Pucci, P., Zhang, Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ. Equ. 257, 1529-1566 (2014) · Zbl 1292.35135 · doi:10.1016/j.jde.2014.05.023
[33] Pucci, P., Xiang, M.Q., Zhang, B.L.: Existence and multiplicity of entire solutions for fractional \[p\] p-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27-55 (2016) · Zbl 1334.35395
[34] Pucci, P., Xiang, M.Q., Zhang, B.L.: Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional \[p\] p-Laplacian in \[{\mathbb{R}}^N\] RN. Calc. Var. Part. Differ. Equ. 54, 2785-2806 (2015) · Zbl 1329.35338 · doi:10.1007/s00526-015-0883-5
[35] Papageorgiou, N.S., Rǎdulescu, V.D., Repovs, D.: Nonlinear Analysis-Theory and Methods. Springer Monographs in Mathematics, Springer, BerlinCham (2019) · Zbl 1414.46003 · doi:10.1007/978-3-030-03430-6
[36] Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Application to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65. American Mathematical Society, Providence (1986) · Zbl 0609.58002 · doi:10.1090/cbms/065
[37] Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887-898 (2012) · Zbl 1234.35291 · doi:10.1016/j.jmaa.2011.12.032
[38] Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105-2137 (2013) · Zbl 1303.35121
[39] Shen, Z., Qian, C.: Infinitely many solutions for a Kirchhoff-type problem with non-standard growth and indefinite weight. Z. Angew. Math. Phys. 66, 399-415 (2015) · Zbl 1323.35017 · doi:10.1007/s00033-014-0410-0
[40] Tan, J.: The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 36, 21-41 (2011) · Zbl 1248.35078 · doi:10.1007/s00526-010-0378-3
[41] Tang, X.H.: Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity. J. Math. Anal. Appl. 401, 407-415 (2013) · Zbl 1364.35103 · doi:10.1016/j.jmaa.2012.12.035
[42] Tang, X.H., Chen, S.T.: Ground state solutions of Nehari-Pohozǎev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 56, 1-25 (2017) · Zbl 1376.35056 · doi:10.1007/s00526-017-1214-9
[43] Zhang, B.L., Ferrara, M.: Multiplicity of solutions for a class of superlinear non-local fractional equations. Complex Var. Elliptic Equ. 60, 583-595 (2015) · Zbl 1321.35256 · doi:10.1080/17476933.2014.959005
[44] Zhang, W., Zhang, J., Mi, H.: On fractional Schrödinger equation with periodic and asymptotically periodic conditions. Comput. Math. Appl. 74, 1321-1332 (2017) · Zbl 1394.35572 · doi:10.1016/j.camwa.2017.06.017
[45] Zhang, J., Zhang, W., Tang, X.H.: Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete Contin. Dyn. Syst. 37, 4565-4583 (2017) · Zbl 1370.35111 · doi:10.3934/dcds.2017195
[46] Zhao, G., Zhu, X., Li, Y.: Existence of infinitely many solutions to a class of Kirchhoff-Schrödinger-Poisson system. Appl. Math. Comput. 256, 572-81 (2015) · Zbl 1338.35159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.