×

Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth. (English) Zbl 1448.35160

Summary: This paper is concerned with the following planar Schrödinger-Poisson system \[ \begin{cases} - \Delta u + V (x) u + \phi u = f (x, u), & x \in \mathbb{R}^2, \\ \Delta \phi = u^2, & x \in \mathbb{R}^2, \end{cases} \] where \(V \in \mathcal{C}(\mathbb{R}^2, [0, \infty))\) is axially symmetric and \(f \in \mathcal{C}(\mathbb{R}^2 \times \mathbb{R}, \mathbb{R})\) is of subcritical or critical exponential growth in the sense of Trudinger-Moser. We obtain the existence of a nontrivial solution or a ground state solution of Nehari-type and infinitely many solutions to the above system under weak assumptions on \(V\) and \(f\). Our theorems extend the results of S. Cingolani and T. Weth [Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, No. 1, 169–197 (2016; Zbl 1331.35126)] and of M. Du and T. Weth [Nonlinearity 30, No. 9, 3492–3515 (2017; Zbl 1384.35010)] and the authors [J. Differ. Equations 268, No. 3, 945–976 (2020; Zbl 1431.35030)], where \(f(x, u)\) has polynomial growth on \(u\). In particular, some new tricks and approaches are introduced to overcome the double difficulties resulting from the appearance of both the convolution \(\phi_{2, u}(x)\) with sign-changing and unbounded logarithmic integral kernel and the critical growth nonlinearity \(f(x, u)\).

MSC:

35J47 Second-order elliptic systems
35J20 Variational methods for second-order elliptic equations
35J62 Quasilinear elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Adachi, S.; Tanaka, K., Trudinger type inequalities in \(\mathbf{R}^N\) and their best exponents, Proc. Am. Math. Soc., 128, 2051-2057 (2000) · Zbl 0980.46020
[2] Adimurthi; Yadava, S. L., Multiplicity results for semilinear elliptic equations in a bounded domain of \(\mathbf{R}^2\) involving critical exponents, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 17, 481-504 (1990) · Zbl 0732.35029
[3] Alves, C. O.; Cassani, D.; Tarsi, C.; Yang, M. B., Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb{R}^2\), J. Differ. Equ., 261, 1933-1972 (2016) · Zbl 1347.35096
[4] Alves, C. O.; Figueiredo, G. M., Existence of positive solution for a planar Schrödinger-Poisson system with exponential growth, J. Math. Phys., 60, Article 011503 pp. (2019) · Zbl 1410.35194
[5] Alves, C. O.; Germano, G. F., Ground state solution for a class of indefinite variational problems with critical growth, J. Differ. Equ., 265, 444-477 (2018) · Zbl 1394.35151
[6] Ambrosetti, A.; Ruiz, D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10, 391-404 (2008) · Zbl 1188.35171
[7] Azzollini, A., Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differ. Equ., 249, 1746-1763 (2010) · Zbl 1197.35096
[8] Benci, V.; Fortunato, D., Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14, 409-420 (2002) · Zbl 1037.35075
[9] Benguria, R.; Brezis, H.; Lieb, E., The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Commun. Math. Phys., 79, 167-180 (1981) · Zbl 0478.49035
[10] Cao, D. M., Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbf{R}^2\), Commun. Partial Differ. Equ., 17, 407-435 (1992) · Zbl 0763.35034
[11] Cassani, D.; Sani, F.; Tarsi, C., Equivalent Moser type inequalities in \(\mathbb{R}^2\) and the zero mass case, J. Funct. Anal., 267, 4236-4263 (2014) · Zbl 1314.46039
[12] Catto, I.; Lions, P., Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Commun. Partial Differ. Equ., 18, 1149-1159 (1993) · Zbl 0807.35116
[13] Cerami, G.; Vaira, J. G., Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248, 521-543 (2010) · Zbl 1183.35109
[14] Chen, S. T.; Shi, J. P.; Tang, X. H., Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity, Discrete Contin. Dyn. Syst., Ser. A, 39, 5867-5889 (2019) · Zbl 1425.35014
[15] Chen, S. T.; Tang, X. H., Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system, Discrete Contin. Dyn. Syst., Ser. B, 24, 4685-4702 (2019) · Zbl 1429.35062
[16] Chen, S. T.; Tang, X. H., On the planar Schrödinger-Poisson system with the axially symmetric potentials, J. Differ. Equ., 268, 945-976 (2020) · Zbl 1431.35030
[17] Chen, S. T.; Fiscella, A.; Pucci, P.; Tang, X. H., Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differ. Equ., 268, 2672-2716 (2020) · Zbl 1436.35078
[18] Cingolani, S.; Weth, T., On the planar Schrödinger-Poisson system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33, 169-197 (2016) · Zbl 1331.35126
[19] D’Aprile, T.; Mugnai, D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. R. Soc. Edinb., Sect. A, 134, 893-906 (2004) · Zbl 1064.35182
[20] de Figueiredo, D. G.; Miyagaki, O. H.; Ruf, B., Elliptic equations in \(\mathbf{R}^2\) with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equ., 3, 139-153 (1995) · Zbl 0820.35060
[21] Du, M.; Weth, T., Ground states and high energy solutions of the planar Schrödinger-Poisson system, Nonlinearity, 30, 3492-3515 (2017) · Zbl 1384.35010
[22] Fiscella, A.; Pucci, P., \((p, N)\) equations with critical exponential nonlinearities in \(\mathbb{R}^N\), J. Math. Anal. Appl. (2019)
[23] He, X. M., Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62, 869-889 (2011) · Zbl 1258.35170
[24] He, X. M.; Zou, W. M., Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53, Article 023702 pp. (2012) · Zbl 1274.81078
[25] Jiang, Y. S.; Zhou, H. S., Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251, 582-608 (2011) · Zbl 1233.35086
[26] Lieb, E., Sharp constants in the Hardy-Littlewood-Sobolev inequality and related inequalities, Ann. Math., 118, 349-374 (1983) · Zbl 0527.42011
[27] Lieb, E.; Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[28] Lieb, E., Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys., 53, 263-301 (1981)
[29] Lions, P., Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., 109, 33-97 (1984) · Zbl 0618.35111
[30] Li, G. B.; Wang, C., The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition, Ann. Acad. Sci. Fenn., Math., 36, 2, 461-480 (2011) · Zbl 1234.35095
[31] Ó, J. M. do; Ruf, B., On a Schrödinger equation with periodic potential and critical growth in \(\mathbb{R}^2\), NoDEA Nonlinear Differ. Equ. Appl., 13, 167-192 (2006) · Zbl 1146.35363
[32] Markowich, P. A.; Ringhofer, C. A.; Schmeiser, C., Semiconductor Equations (1990), x+248 · Zbl 0765.35001
[33] Miyagaki, O. H.; Pucci, P., Nonlocal Kirchhoff problems with Trudinger-Moser critical nonlinearities, NoDEA Nonlinear Differ. Equ. Appl., 26, 27 (2019), 26 pp · Zbl 1422.35054
[34] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0609.58002
[35] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237, 655-674 (2006) · Zbl 1136.35037
[36] Silva, E. A.B.; Vieira, G. F., Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differ. Equ., 39, 1-33 (2010) · Zbl 1223.35290
[37] Struwe, M., Variational Methods (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0864.49001
[38] Stubbe, J., Bound states of two-dimensional Schrödinger-Newton equations, eprint
[39] Sun, J. J.; Ma, S. W., Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differ. Equ., 260, 2119-2149 (2016) · Zbl 1334.35044
[40] Tang, X. H.; Chen, S. T., Ground state solutions of Nehari-Pohoz̆aev type for Schrödinger-Poisson problems with general potentials, Discrete Contin. Dyn. Syst., 37, 4973-5002 (2017) · Zbl 1371.35051
[41] Tang, X. H.; Chen, S. T.; Lin, X. Y.; Yu, J. S., Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions, J. Differ. Equ., 268, 4663-4690 (2020) · Zbl 1437.35224
[42] Wang, Z. P.; Zhou, H. S., Sign-changing solutions for the nonlinear Schrödinger-Poisson system in \(\mathbb{R}^3\), Calc. Var. Partial Differ. Equ., 52, 927-943 (2015) · Zbl 1311.35300
[43] Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24 (1996), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA · Zbl 0856.49001
[44] Zhang, J., On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinear Anal., 75, 6391-6401 (2012) · Zbl 1254.35065
[45] Zhang, J. J., The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth, J. Math. Phys., 55, Article 031507 pp. (2014) · Zbl 1286.81075
[46] Zhao, L. G.; Zhao, F. K., Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70, 2150-2164 (2009) · Zbl 1156.35374
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.