×

Metric growth dynamics in Liouville quantum gravity. (English) Zbl 1525.60020

Summary: We consider the metric growth in Liouville quantum gravity (LQG) for \(\gamma \in (0,2)\). We show that a process associated with the trace of the free field on the boundary of a filled LQG ball is stationary, for every \(\gamma \in (0,2)\). The infinitesimal version of this stationarity combined with an explicit expression of the generator of the evolution of the trace field \((h_t)\) provides a formal invariance equation that a measure on trace fields must satisfy. When considering a modified process corresponding to an evolution of LQG surfaces, we prove that the invariance equation is satisfied by an explicit \(\sigma \)-finite measure on trace fields. This explicit measure on trace fields only corresponds to the pure gravity case. On the way to prove this invariance, we retrieve the specificity of both \(\gamma = \sqrt{8/3}\) and of the LQG dimension \(d_{\gamma } = 4\). In this case, we derive an explicit expression of the (nonsymmetric) Dirichlet form associated with the process \((h_t)\) and construct dynamics associated with its symmetric part.

MSC:

60D05 Geometric probability and stochastic geometry
60J67 Stochastic (Schramm-)Loewner evolution (SLE)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
83C45 Quantization of the gravitational field
60G60 Random fields

References:

[1] Albeverio, S., Röckner, M.: Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms. Probab. Theory Related Fields 89(3), 347-386 (1991) · Zbl 0725.60055
[2] Ang, M.: Comparison of discrete and continuum Liouville first passage percolation. Electron. Commun. Probab., 24:Paper No. 64, 12 (2019) · Zbl 1423.60150
[3] Ang, M., Falconet, H., Sun, X.: Volume of metric balls in Liouville quantum gravity. Electron. J. Probab., 25:Paper No. 160, 1-50 (2020) · Zbl 1470.60026
[4] Angel, O., Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal., 13, 5, 935-974 (2003) · Zbl 1039.60085
[5] Angel, O.; Curien, N., Percolations on random maps I: Half-plane models, Ann. Inst. Henri Poincaré Probab. Stat., 51, 2, 405-431 (2015) · Zbl 1315.60105
[6] Angel, O.; Kolesnik, B.; Miermont, G., Stability of geodesics in the Brownian map, Ann. Probab., 45, 5, 3451-3479 (2017) · Zbl 1407.60018
[7] Angel, O.; Schramm, O., Uniform infinite planar triangulations, Commun. Math. Phys., 241, 2-3, 191-213 (2003) · Zbl 1098.60010
[8] Aru, J.; Huang, Y.; Sun, X., Two perspectives of the 2D unit area quantum sphere and their equivalence, Commum. Math. Phys., 356, 1, 261-283 (2017) · Zbl 1408.83023
[9] Astala, K.; Jones, P.; Kupiainen, A.; Saksman, E., Random conformal weldings, Acta Math., 207, 2, 203-254 (2011) · Zbl 1253.30032
[10] Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab., 22:Paper No. 27, 12 (2017) · Zbl 1365.60035
[11] Berestycki, N., Sheffield, S., Sun, X.: Equivalence of Liouville measure and Gaussian free field. arXiv:1410.5407 (2014)
[12] Binder, I.; Rojas, C.; Yampolsky, M., Carathéodory convergence and harmonic measure, Potential Anal., 51, 4, 499-509 (2019) · Zbl 1435.31004
[13] Bourgade, P., Falconet, H.: Liouville quantum gravity from random matrix dynamics. arXiv e-prints, page arXiv:2206.03029 (2022)
[14] Corwin, I., The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl., 1, 1, 1130001, 76 (2012) · Zbl 1247.82040
[15] Curien, N., A glimpse of the conformal structure of random planar maps, Commum. Math. Phys., 333, 3, 1417-1463 (2015) · Zbl 1356.60165
[16] Curien, N.; Le Gall, J-F, First-passage percolation and local modifications of distances in random triangulations, Ann. Sci. Éc. Norm. Supér. (4), 52, 3, 631-701 (2019) · Zbl 1429.05188
[17] Da Prato, G.: An Introduction to Infinite-Dimensional Analysis. Universitext. Springer-Verlag, Berlin, (2006). Revised and extended from the 2001 original by Da Prato · Zbl 1109.46001
[18] Da Prato, G., Tubaro, L.: Wick Powers in Stochastic PDEs: An Introduction. Technical Report UTM 711, University of Trento (2007)
[19] David, F.; Kupiainen, A.; Rhodes, R.; Vargas, V., Liouville quantum gravity on the Riemann sphere, Commun. Math. Phys., 342, 3, 869-907 (2016) · Zbl 1336.83042
[20] Ding, J.; Dubédat, J.; Dunlap, A.; Falconet, H., Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\), Publ. Math. Inst. Hautes Études Sci., 132, 353-403 (2020) · Zbl 1455.82008
[21] Ding, J.; Gwynne, E., The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds, Commun. Math. Phys., 374, 3, 1877-1934 (2020) · Zbl 1436.83024
[22] Ding, J.; Zeitouni, O.; Zhang, F., Heat kernel for Liouville Brownian motion and Liouville graph distance, Commun. Math. Phys., 371, 2, 561-618 (2019) · Zbl 1480.60090
[23] Dubédat, J., SLE and the free field: partition functions and couplings, J. Am. Math. Soc., 22, 4, 995-1054 (2009) · Zbl 1204.60079
[24] Dubédat, J., Shen, H.: Stochastic Ricci flow on compact surfaces. to appear in International Mathematics Research Notices, 04 (2021)
[25] Duplantier, B.; Rhodes, R.; Sheffield, S.; Vargas, V., Critical Gaussian multiplicative chaos: convergence of the derivative martingale, Ann. Probab., 42, 5, 1769-1808 (2014) · Zbl 1306.60055
[26] Duplantier, B.; Sheffield, S., Liouville quantum gravity and KPZ, Invent. Math., 185, 2, 333-393 (2011) · Zbl 1226.81241
[27] Fukushima, M.; Oshima, Y.; Takeda, M., Dirichlet Forms and Symmetric Markov Processes, Volume 19 of De Gruyter Studies in Mathematics (2011), Berlin: Walter de Gruyter & Co., Berlin · Zbl 1227.31001
[28] Garban, C., Dynamical Liouville, J. Funct. Anal., 278, 6, 108351 (2020) · Zbl 1432.81035
[29] Garnett, JB, Bounded Analytic Functions, Volume 96 of Pure and Applied Mathematics (1981), New York-London: Academic Press Inc. [Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0469.30024
[30] Gonçalves, P.; Jara, M., Nonlinear fluctuations of weakly asymmetric interacting particle systems, Arch. Ration. Mech. Anal., 212, 2, 597-644 (2014) · Zbl 1293.35336
[31] Gubinelli, M.; Jara, M., Regularization by noise and stochastic Burgers equations, Stoch. Partial Differ. Equ. Anal. Comput., 1, 2, 325-350 (2013) · Zbl 1312.35150
[32] Gubinelli, M.; Perkowski, N., The infinitesimal generator of the stochastic Burgers equation, Probab. Theory Related Fields, 178, 3-4, 1067-1124 (2020) · Zbl 1470.60192
[33] Guillarmou, C., Kupiainen, A., Rhodes, R., Vargas, V.: Conformal bootstrap in Liouville Theory. arXiv e-prints, page arXiv:2005.11530 (2020)
[34] Guillarmou, C.; Rhodes, R.; Vargas, V., Polyakov’s formulation of \(2d\) bosonic string theory, Publ. Math. Inst. Hautes Études Sci., 130, 111-185 (2019) · Zbl 1514.81216
[35] Gwynne, E., The dimension of the boundary of a Liouville quantum gravity metric ball, Commun. Math. Phys., 378, 1, 625-689 (2020) · Zbl 1450.81057
[36] Gwynne, E., Geodesic networks in Liouville quantum gravity surfaces, Probab. Math. Phys., 2, 3, 643-684 (2021) · Zbl 1489.60016
[37] Gwynne, E., Holden, N., Sun, X.: Mating of trees for random planar maps and Liouville quantum gravity: a survey. arXiv:1910.04713 (2019)
[38] Gwynne, E.; Miller, J., Confluence of geodesics in Liouville quantum gravity for \(\gamma \in (0,2)\), Ann. Probab., 48, 4, 1861-1901 (2020) · Zbl 1453.60141
[39] Gwynne, E.; Miller, J., Convergence of the self-avoiding walk on random quadrangulations to \({\rm SLE}_{8/3}\) on \(\sqrt{8/3} \)-Liouville quantum gravity, Ann. Sci. Éc. Norm. Supér. (4), 54, 2, 305-405 (2021) · Zbl 1481.60166
[40] Gwynne, E.; Miller, J., Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\), Invent. Math., 223, 1, 213-333 (2021) · Zbl 1461.83018
[41] Gwynne, E., Pfeffer, J., Sheffield, S.: Geodesics and metric ball boundaries in Liouville quantum gravity. arXiv e-prints, page arXiv:2010.07889 (2020)
[42] Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mémoires presentés par divers savants à l’Académie des Sciences, pp. 1-128 (1908) · JFM 39.1022.01
[43] Hairer, M.: Advanced stochastic analysis, introduction to malliavin calculus. Lecture notes available on the webpage of the author (2021)
[44] Hedenmalm, H.; Nieminen, PJ, The Gaussian free field and Hadamard’s variational formula, Probab. Theory Related Fields, 159, 1-2, 61-73 (2014) · Zbl 1302.60134
[45] Hoshino, M., Kawabi, H., Kusuoka, S.: Stochastic quantization associated with the \(\exp (\Phi )_2\)-quantum field model driven by space-time white noise on the torus in the full \(L^1\)-regime. arXiv:2007.08171 (2020)
[46] Hoshino, M.; Kawabi, H.; Kusuoka, S., Stochastic quantization associated with the \(\exp (\Phi )_2\)-quantum field model driven by space-time white noise on the torus, J. Evol. Equ., 21, 1, 339-375 (2021) · Zbl 1467.35269
[47] Huang, Y.; Rhodes, R.; Vargas, V., Liouville quantum gravity on the unit disk, Ann. Inst. Henri Poincaré Probab. Stat., 54, 3, 1694-1730 (2018) · Zbl 1404.60071
[48] Izyurov, K.; Kytölä, K., Hadamard’s formula and couplings of SLEs with free field, Probab. Theory Related Fields, 155, 1-2, 35-69 (2013) · Zbl 1269.60067
[49] Kahane, J-P, Sur le chaos multiplicatif, Ann. Sci. Math. Québec, 9, 2, 105-150 (1985) · Zbl 0596.60041
[50] Kenyon, R., Dominos and the Gaussian free field, Ann. Probab., 29, 3, 1128-1137 (2001) · Zbl 1034.82021
[51] Kupiainen, A.; Rhodes, R.; Vargas, V., Integrability of Liouville theory: proof of the DOZZ formula, Ann. Math. (2), 191, 1, 81-166 (2020) · Zbl 1432.81055
[52] Le Gall, J-F, The topological structure of scaling limits of large planar maps, Invent. Math., 169, 3, 621-670 (2007) · Zbl 1132.60013
[53] Le Gall, J-F, Uniqueness and universality of the Brownian map, Ann. Probab., 41, 4, 2880-2960 (2013) · Zbl 1282.60014
[54] Le Gall, J-F, Brownian Motion, Martingales, and Stochastic Calculus, Volume 274 of Graduate Texts in Mathematics (2016), Cham: Springer, Cham · Zbl 1378.60002
[55] Le Gall, J-F, Brownian geometry, Jpn. J. Math., 14, 2, 135-174 (2019) · Zbl 1471.60016
[56] Le Gall, J.-F.: Geodesic stars in random geometry. arXiv e-prints, page arXiv:2102.00489 (2021)
[57] Le Gall, J.-F.: The volume measure of the Brownian sphere is a Hausdorff measure. arXiv e-prints, page arXiv:2105.05615 (2021)
[58] Ma, ZM; Röckner, M., Introduction to the Theory of (nonsymmetric) Dirichlet Forms (1992), Berlin: Universitext. Springer-Verlag, Berlin · Zbl 0826.31001
[59] Miermont, G., The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., 210, 2, 319-401 (2013) · Zbl 1278.60124
[60] Miller, J.: Liouville quantum gravity as a metric space and a scaling limit. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pp. 2945-2971. World Scientific Publishing, Hackensack, NJ (2018) · Zbl 1458.60057
[61] Miller, J., Qian, W.: Geodesics in the Brownian map: Strong confluence and geometric structure. arXiv e-prints, page arXiv:2008.02242 (2020)
[62] Miller, J.; Sheffield, S., Imaginary geometry I: interacting SLEs, Probab. Theory Related Fields, 164, 3-4, 553-705 (2016) · Zbl 1336.60162
[63] Miller, J.; Sheffield, S., Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding, Ann. Probab., 49, 2732-2829 (2021) · Zbl 1478.60045
[64] Miller, J.; Sheffield, S., Quantum Loewner evolution, Duke Math. J., 165, 17, 3241-3378 (2016) · Zbl 1364.82023
[65] Miller, J.; Sheffield, S., Liouville quantum gravity spheres as matings of finite-diameter trees, Ann. Inst. Henri Poincaré Probab. Stat., 55, 3, 1712-1750 (2019) · Zbl 1448.60168
[66] Miller, J.; Sheffield, S., Liouville quantum gravity and the Brownian map I: the \({\rm QLE}(8/3,0)\) metric, Invent. Math., 219, 1, 75-152 (2020) · Zbl 1437.83042
[67] Miller, J.; Sheffield, S., An axiomatic characterization of the Brownian map, J. Éc. Polytech. Math., 8, 609-731 (2021) · Zbl 1478.60043
[68] Miller, J.; Sheffield, S., Liouville quantum gravity and the Brownian map III: the conformal structure is determined, Probab. Theory Related Fields, 179, 3-4, 1183-1211 (2021) · Zbl 1478.60044
[69] Naddaf, A.; Spencer, T., On homogenization and scaling limit of some gradient perturbations of a massless free field, Commun. Math. Phys., 183, 1, 55-84 (1997) · Zbl 0871.35010
[70] Polyakov, AM, Quantum geometry of bosonic strings, Phys. Lett. B, 103, 3, 207-210 (1981)
[71] Roth, O.; Schippers, E., The Loewner and Hadamard variations, Illinois J. Math., 52, 4, 1399-1415 (2008) · Zbl 1187.30005
[72] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., 118, 221-288 (2000) · Zbl 0968.60093
[73] Schramm, O.; Sheffield, S., Contour lines of the two-dimensional discrete Gaussian free field, Acta Math., 202, 1, 21-137 (2009) · Zbl 1210.60051
[74] Shamov, A., On Gaussian multiplicative chaos, J. Funct. Anal., 270, 9, 3224-3261 (2016) · Zbl 1337.60054
[75] Sheffield, S., Gaussian free fields for mathematicians, Probab. Theory Related Fields, 139, 3-4, 521-541 (2007) · Zbl 1132.60072
[76] Sheffield, S., Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab., 44, 5, 3474-3545 (2016) · Zbl 1388.60144
[77] Sheffield, S.: What is a Random Surface? arXiv e-prints, page arXiv:2203.02470, (Mar. 2022)
[78] Silvestri, V., Fluctuation results for Hastings-Levitov planar growth, Probab. Theory Relat. Fields, 167, 1-2, 417-460 (2017) · Zbl 1360.60074
[79] Viklund, F., Wang, Y.: The Loewner-Kufarev Energy and Foliations by Weil-Petersson Quasicircles. arXiv e-prints, page arXiv:2012.05771, (2020)
[80] Werner, W., Powell, E.: Lecture notes on the Gaussian Free Field. arXiv e-prints, page arXiv:2004.04720, (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.