×

Confluence of geodesics in Liouville quantum gravity for \(\gamma \in (0,2)\). (English) Zbl 1453.60141

Summary: We prove that for any metric, which one can associate with a Liouville quantum gravity (LQG) surface for \(\gamma \in (0,2)\) satisfying certain natural axioms, its geodesics exhibit the following confluence property. For any fixed point \(z\), a.s. any two \(\gamma \)-LQG geodesics started from distinct points other than \(z\) must merge into each other and subsequently coincide until they reach \(z\). This is analogous to the confluence of geodesics property for the Brownian map proven by J.-F. Le Gall [Acta Math. 205, No. 2, 287–360 (2010; Zbl 1214.53036)]. Our results apply for the subsequential limits of Liouville first passage percolation and are an important input in the proof of the existence and uniqueness of the LQG metric for all \(\gamma \in (0,2)\).

MSC:

60J67 Stochastic (Schramm-)Loewner evolution (SLE)
60G52 Stable stochastic processes

Citations:

Zbl 1214.53036

References:

[1] Bettinelli, J. and Miermont, G. (2017). Compact Brownian surfaces I: Brownian disks. Probab. Theory Related Fields 167 555-614. · Zbl 1373.60062 · doi:10.1007/s00440-016-0752-y
[2] Burago, D., Burago, Y. and Ivanov, S. (2001). A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Providence, RI. · Zbl 0981.51016
[3] Ding, J., Dubédat, J., Dunlap, A. and Falconet, H. (2019). Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\). ArXiv e-prints.
[4] Ding, J. and Gwynne, E. (2018). The fractal dimension of Liouville quantum gravity: Universality, monotonicity, and bounds. Comm. Math. Phys. To appear. · Zbl 1436.83024 · doi:10.1007/s00220-019-03487-4
[5] Dubédat, J., Falconet, H., Gwynne, E., Pfeffer, J. and Sun, X. (2019). Weak LQG metrics and Liouville first passage percolation. ArXiv e-prints.
[6] Duplantier, B. and Sheffield, S. (2011). Liouville quantum gravity and KPZ. Invent. Math. 185 333-393. · Zbl 1226.81241 · doi:10.1007/s00222-010-0308-1
[7] Gwynne, E. and Miller, J. (2019). Local metrics of the Gaussian free field. ArXiv e-prints. · Zbl 1466.60019 · doi:10.1214/18-AIHP891
[8] Gwynne, E. and Miller, J. (2019). Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\). ArXiv e-prints. · Zbl 1466.60020 · doi:10.1214/18-AOP1309
[9] Gwynne, E., Miller, J. and Sheffield, S. (2018). The Tutte embedding of the Poisson-Voronoi tessellation of the Brownian disk converges to \(\sqrt{8/3} \)-Liouville quantum gravity. ArXiv e-prints. · Zbl 1441.60015 · doi:10.1007/s00220-019-03610-5
[10] Gwynne, E. and Pfeffer, J. (2019). KPZ formulas for the Liouville quantum gravity metric. ArXiv e-prints. · Zbl 1459.60022 · doi:10.1214/19-ECP248
[11] Kahane, J.-P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 105-150. · Zbl 0596.60041
[12] Le Gall, J.-F. (2010). Geodesics in large planar maps and in the Brownian map. Acta Math. 205 287-360. · Zbl 1214.53036 · doi:10.1007/s11511-010-0056-5
[13] Le Gall, J.-F. (2013). Uniqueness and universality of the Brownian map. Ann. Probab. 41 2880-2960. · Zbl 1282.60014 · doi:10.1214/12-AOP792
[14] Miermont, G. (2013). The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 319-401. · Zbl 1278.60124 · doi:10.1007/s11511-013-0096-8
[15] Miller, J. and Qian, W. (2018). The geodesics in Liouville quantum gravity are not Schramm-Loewner evolutions. ArXiv e-prints.
[16] Miller, J. and Sheffield, S. (2015). Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric. Invent. Math. To appear. · Zbl 1437.83042 · doi:10.1007/s00222-019-00905-1
[17] Miller, J. and Sheffield, S. (2015). An axiomatic characterization of the Brownian map. ArXiv e-prints.
[18] Miller, J. and Sheffield, S. (2016). Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding. ArXiv e-prints.
[19] Miller, J. and Sheffield, S. (2016). Liouville quantum gravity and the Brownian map III: The conformal structure is determined. ArXiv e-prints.
[20] Miller, J. and Sheffield, S. (2016). Imaginary geometry I: Interacting SLEs. Probab. Theory Related Fields 164 553-705. · Zbl 1336.60162 · doi:10.1007/s00440-016-0698-0
[21] Miller, J. and Sheffield, S. (2016). Quantum Loewner evolution. Duke Math. J. 165 3241-3378. · Zbl 1364.82023 · doi:10.1215/00127094-3627096
[22] Miller, J. and Sheffield, S. (2017). Imaginary geometry IV: Interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Related Fields 169 729-869. · Zbl 1378.60108 · doi:10.1007/s00440-017-0780-2
[23] Pitt, L. D. (1982). Positively correlated normal variables are associated. Ann. Probab. 10 496-499. · Zbl 0482.62046 · doi:10.1214/aop/1176993872
[24] Polyakov, A. M. (1981). Quantum geometry of bosonic strings. Phys. Lett. B 103 207-210.
[25] Rhodes, R. and Vargas, V. (2014). Gaussian multiplicative chaos and applications: A review. Probab. Surv. 11 315-392. · Zbl 1316.60073 · doi:10.1214/13-PS218
[26] Schramm, O. and Sheffield, S. (2013). A contour line of the continuum Gaussian free field. Probab. Theory Related Fields 157 47-80. · Zbl 1331.60090 · doi:10.1007/s00440-012-0449-9
[27] Sheffield, S. · Zbl 1132.60072 · doi:10.1007/s00440-006-0050-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.