×

Comparison of discrete and continuum Liouville first passage percolation. (English) Zbl 1423.60150

Summary: Discrete and continuum Liouville first passage percolation (DLFPP, LFPP) are two approximations of the \(\gamma \)-Liouville quantum gravity (LQG) metric, obtained by exponentiating the discrete Gaussian free field (GFF) and the circle average regularization of the continuum GFF respectively. We show that these two models can be coupled so that with high probability distances in these models agree up to \(o(1)\) errors in the exponent, and thus have the same distance exponent.
J. Ding and E. Gwynne [“The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds”, Preprint , arXiv:1807.01072] give a formula for the continuum LFPP distance exponent in terms of the \(\gamma \)-LQG dimension exponent \(d_{\gamma }\). Using results of J. Ding and L. Li [Commun. Math. Phys. 360, No. 2, 523–553 (2018; Zbl 1394.60098)] on the level set percolation of the discrete GFF, we bound the DLFPP distance exponent and hence obtain a new lower bound \(d_{\gamma }\geq 2 + \frac{\gamma ^2} {2}\). This improves on previous lower bounds for \(d_{\gamma }\) for the regime \(\gamma \in (\gamma _0, 0.576)\), for some small nonexplicit \(\gamma _0 > 0\).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G60 Random fields
82B43 Percolation

Citations:

Zbl 1394.60098

References:

[1] [Ang03] O. Angel. Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal., 13(5):935-974, 2003, arXiv:math/0208123. · Zbl 1039.60085 · doi:10.1007/s00039-003-0436-5
[2] [BDG01] E. Bolthausen, J.-D. Deuschel, and G. Giacomin. Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab., 29(4):1670-1692, 2001. · Zbl 1034.82018 · doi:10.1214/aop/1015345767
[3] [DDDF19] J. Ding, J. Dubédat, A. Dunlap, and H. Falconet. Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\). ArXiv e-prints, April 2019, arXiv:1904.08021. · Zbl 1455.82008
[4] [DD19] J. Ding and A. Dunlap. Liouville first-passage percolation: subsequential scaling limits at high temperature. Ann. Probab., 47(2):690-742, 2019, arXiv:1605.04011. · Zbl 1466.60204 · doi:10.1214/18-AOP1267
[5] [DG18a] J. Ding and S. Goswami. Upper bounds on Liouville first passage percolation and Watabiki’s prediction. Communications on Pure and Applied Mathematics, 2018, arXiv:1610.09998. · Zbl 1442.60098
[6] [DG18b] J. Ding and E. Gwynne. The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds. Communications in Mathematical Physics, pages 1-58, 2018, arXiv:1807.01072.
[7] [DL18] J. Ding and L. Li. Chemical distances for percolation of planar Gaussian free fields and critical random walk loop soups. Comm. Math. Phys., 360(2):523-553, 2018, arXiv:1605.04449. · Zbl 1394.60098 · doi:10.1007/s00220-018-3140-x
[8] [DW18] J. Ding and M. Wirth. Percolation for level-sets of Gaussian free fields on metric graphs. ArXiv e-prints, July 2018, arXiv:1807.11117.
[9] [DZZ18] J. Ding, O. Zeitouni, and F. Zhang. Heat kernel for Liouville Brownian motion and Liouville graph distance. Communications in Mathematical Physics, pages 1-58, 2018, arXiv:1807.00422.
[10] [DZ19] J. Ding and F. Zhang. Liouville first passage percolation: geodesic length exponent is strictly larger than 1 at high temperatures. Probab. Theory Related Fields, 174(1-2):335-367, 2019, arXiv:1610.02766. · Zbl 1412.60072
[11] [DF18] J. Dubédat and H. Falconet. Liouville metric of star-scale invariant fields: tails and Weyl scaling. Probability Theory and Related Fields, pages 1-60, 2018, arXiv:1809.02607.
[12] \([DFG^+19]\) J. Dubédat, H. Falconet, E. Gwynne, J. Pfeffer, and X. Sun. Weak LQG metrics and Liouville first passage percolation. ArXiv e-prints, May 2019, arXiv:1905.00380. · Zbl 1469.60054
[13] [DS11] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math., 185(2):333-393, 2011, arXiv:1206.0212. · Zbl 1226.81241
[14] [GHS17] E. Gwynne, N. Holden, and X. Sun. A mating-of-trees approach for graph distances in random planar maps. ArXiv e-prints, November 2017, arXiv:1711.00723.
[15] [GM19a] E. Gwynne and J. Miller. Confluence of geodesics in Liouville quantum gravity for \(\gamma \in (0,2)\). ArXiv e-prints, May 2019, arXiv:1905.00381.
[16] [GM19b] E. Gwynne and J. Miller. Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\). ArXiv e-prints, May 2019, arXiv:1905.00383.
[17] [GM19c] E. Gwynne and J. Miller. Local metrics of the Gaussian free field. ArXiv e-prints, May 2019, arXiv:1905.00379.
[18] [GP19a] E. Gwynne and J. Pfeffer. KPZ formulas for the Liouville quantum gravity metric. ArXiv e-prints, July 2019, arXiv:1905.11790.
[19] [GP19b] E. Gwynne and J. Pfeffer. Bounds for distances and geodesic dimension in Liouville first passage percolation. Electron. Commun. Probab., 24:12 pp., 2019, arXiv:1903.09561. · Zbl 1459.60022
[20] [Kah85] J.-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105-150, 1985. · Zbl 0596.60041
[21] [LL10] G. F. Lawler and V. Limic. Random walk: a modern introduction, volume 123 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. · Zbl 1210.60002
[22] [Le13] J.-F. Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab., 41(4):2880-2960, 2013, arXiv:1105.4842. · Zbl 1282.60014 · doi:10.1214/12-AOP792
[23] [Mie13] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math., 210(2):319-401, 2013, arXiv:1104.1606. · Zbl 1278.60124
[24] [MS16a] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. ArXiv e-prints, May 2016, arXiv:1605.03563.
[25] [MS16b] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map III: the conformal structure is determined. ArXiv e-prints, August 2016, arXiv:1608.05391.
[26] [MS19] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric. Inventiones mathematicae, Jul 2019, arXiv:1507.00719.
[27] [RV14] R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: A review. Probab. Surv., 11:315-392, 2014, arXiv:1305.6221. · Zbl 1316.60073
[28] [She07] S. Sheffield. Gaussian free fields for mathematicians. Probab. Theory Related Fields, 139(3-4):521-541, 2007, arXiv:math/0312099. · Zbl 1132.60072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.