×

On monogenity of certain number fields defined by \(x^8+ax+b\). (English) Zbl 1513.11177

Extending a serious of results on the monogenity of trinomials and monogenity of number fields generated by a root of a trinomial, the author considers trinomials of degree eight. Various conditions are given for the non-monogenity of trinomials and the corresponding number fields.
Among other the author proves: Let \(F(x)=x^8+p^rax+p^kb\in\mathbb{Z}[x]\) with discriminant \(D\) and let \(r\ge k\ge 3\), \(p\nmid ab\), \(k\) odd. Denote by \(D_p\) the \(p\)-free part of \(D\) and assume that \(D_p\) is square-free modulo \(p\).

Let \(K\) be a number field generated by a root of \(F(x)\). Then \(K\) is monogenic, but a root of \(F(x)\) does not generate a power integral basis in \(K\).

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11R16 Cubic and quartic extensions
11R21 Other number fields
Full Text: DOI

References:

[1] Ahmad, S.; Nakahara, T.; Husnine, SM, Power integral bases for certain pure sextic fields, Internat, J. Number Theory, 10, 2257-2265 (2014) · Zbl 1316.11094 · doi:10.1142/S1793042114500778
[2] Ahmad, S.; Nakahara, T.; Hameed, A., On certain pure sextic fields related to a problem of Hasse, Internat. J. Algebra Comput., 26, 577-583 (2016) · Zbl 1404.11124 · doi:10.1142/S0218196716500259
[3] H. Ben Yakkou and L. El Fadil, On monogenity of certain number fields defined by trinomials, arXiv:2109.08765 (2021) · Zbl 1483.11236
[4] H. Ben Yakkou and L. El Fadil, On monogenity of certain pure number fields defined by \(x^{p^r}-m\), Internat. J. Number Theory (2021), doi:10.1142/S1793042121500858. · Zbl 1483.11236
[5] H. Ben Yakkou, A. Chillali and L. El Fadil, On power integral bases for certain pure number fields defined by \(x^{2^r \cdot 5^s}- m \), Comm. Algebra, 49, (2021), 2916-2926 · Zbl 1471.11260
[6] Bilu, Y.; Gaál, I.; Győry, K., Index form equations in sextic fields: a hard computation, Acta Arith., 115, 85-96 (2004) · Zbl 1064.11084 · doi:10.4064/aa115-1-7
[7] Davis, CT; Spearman, BK, The index of quartic field defined by a trinomial \(x^4+ax+b\), J. Algebra Appl., 17, 1850197 (2018) · Zbl 1437.11149 · doi:10.1142/S0219498818501979
[8] Dedekind, R., Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Göttingen Abhandlungen, 23, 1-23 (1878)
[9] L. El Fadil, On power integral bases for certain pure number fields defined by \(x^{24}- m \), Studia Sci. Math. Hungar., 57 (2020), 397-407. · Zbl 1474.11182
[10] El Fadil, L.; Montes, J.; Nart, E., Newton polygons and \(p\)-integral bases of quartic number fields, J. Algebra Appl., 11, 1250073 (2012) · Zbl 1297.11134 · doi:10.1142/S0219498812500739
[11] A. J. Engler and A. Prestel, Valued Fields, Springer-Verlag (Berlin, Heidelberg, 2005) · Zbl 1128.12009
[12] Evertse, JH; Győry, K., Discriminant Equations in Diophantine Number Theory (2017), Press: Cambridge Univ, Press · Zbl 1361.11002 · doi:10.1017/CBO9781316160763
[13] I. Gaál, Diophantine Equations and Power Integral Bases, Theory and Algorithm, 2nd ed., Birkhäuser (Boston, 2019) · Zbl 1465.11090
[14] Gaál, I., An experiment on the monogenity of a family of trinomials, JP J. Algebra Number Theory Appl., 51, 97-111 (2021) · Zbl 1499.11318
[15] Gaál, I.; Győry, K., Index form equations in quintic fields, Acta Arith., 89, 379-396 (1999) · Zbl 0930.11091 · doi:10.4064/aa-89-4-379-396
[16] Gaál, I.; Pethő, A.; Pohst, M., On the resolution of index form equations in quartic number fields, J. Symbolic Comput., 16, 563-584 (1993) · Zbl 0808.11023 · doi:10.1006/jsco.1993.1064
[17] Gaál, I.; Remete, L., Power integral bases and monogenity of pure fields, J. Number Theory, 173, 129-146 (2017) · Zbl 1419.11118 · doi:10.1016/j.jnt.2016.09.009
[18] Gaál, I.; Remete, L., Non-monogenity in a family of octic fields, Rocky Mountain J. Math., 47, 817-824 (2017) · Zbl 1381.11102 · doi:10.1216/RMJ-2017-47-3-817
[19] Gaál, I.; Schulte, N., Computing all power integral bases of cubic number fields, Math. Comput., 53, 689-696 (1989) · Zbl 0677.10013 · doi:10.1090/S0025-5718-1989-0979943-X
[20] Guàrdia, J.; Montes, J.; Nart, E., Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc., 364, 361-416 (2012) · Zbl 1252.11091 · doi:10.1090/S0002-9947-2011-05442-5
[21] Győry, K., Sur les polynômes à coefficients entiers et de discriminant donné, Publ. Math. Debrecen, 23, 141-165 (1976) · Zbl 0354.10041
[22] A. Hameed and T. Nakahara, Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 58, (2015), 419-433 · Zbl 1363.11094
[23] H. Hasse, Zahlentheorie, Akademie-Verlag (Berlin, 1963) · Zbl 1038.11500
[24] A. Jakhar and S. Kumar, On non-monogenic number fields defined by \(x^6+ax+b\), Canad. Math. Bull., doi:10.4153/S0008439521000825. · Zbl 1506.11135
[25] Jhorar, B.; Khanduja, S., On power basis of a class of algebraic number fields, Internat, J. Number Theory, 12, 2317-2321 (2016) · Zbl 1357.11106 · doi:10.1142/S1793042116501384
[26] Jones, L.; White, D., Monogenic trinomials with non-squarefree discriminant, Internat. J. Math. (2021) · Zbl 1478.11125 · doi:10.1142/S0129167X21500890
[27] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer (2004) · Zbl 1159.11039
[28] Ore, O., Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann., 99, 84-117 (1928) · JFM 54.0191.02 · doi:10.1007/BF01459087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.