×

On monogenity of certain pure number fields defined by \(x^{p^r}-m\). (English) Zbl 1483.11236

Let \(K\) be the number field defined by a complex root \(\alpha\) of a monic irreducible polynomial \(x^{p^r} - m\), where \(m \ne 1\) a square free rational integer, \(p\) is a prime number and \(r\) is a positive integer. Let \(\nu_p(n)\) be the power of the prime \(p\) in the expansion of the integer \(n\). The authors prove that if \(\nu_p(m^p-m)=1\) then \({\mathbb Z}[\alpha]\) is the ring of integers of \(K\), and so \(K\) is monogenic and \(\alpha\) generates a power integral basis. In particular, for \(p=2\), this implies the above assertion for \(m \equiv 2,3 \pmod 4\) and any positive integer \(r\). The authors also show that if \(p\) is an odd prime that does not divide \(m\) and also \(\nu_p(m^{p-1}-1)>p\) and \(r \geq p\), then the corresponding field \(K\) is not monogenic.

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11R16 Cubic and quartic extensions
11R21 Other number fields

References:

[1] Ahmad, S., Nakahara, T. and Hameed, A., On certain pure sextic fields related to a problem of Hasse, Internat. J. Algebra Comput.26(3) (2016) 577-583. · Zbl 1404.11124
[2] Ahmad, S., Nakahara, T. and Husnine, S. M., Power integral bases for certain pure sextic fields, Int. J. Number Theory10(8) (2014) 2257-2265. · Zbl 1316.11094
[3] Bilu, Y., Gaál, I. and Györy, K., Index form equations in sextic fields: A hard computation, Acta Arith.115(1) (2004) 85-96. · Zbl 1064.11084
[4] Cohen, H., A Course in Computational Algebraic Number Theory, , Vol. 138 (Springer-Verlag, Berlin, Heidelberg, 1993). · Zbl 0786.11071
[5] Dedekind, R., Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der Höheren Kongruenzen, Abh. Kgl. Ges. Wiss. Göttingen23 (1878) 1-23.
[6] El Fadil, L., Computation of a power integral basis of a pure cubic number field, Int. J. Contemp. Math. Sci.2(13-16) (2007) 601-606. · Zbl 1148.11015
[7] El Fadil, L., On Newton polygon’s techniques and factorization of polynomial over henselian valued fields, J. Algebra Appl.19(10) (2020) 2050188, https://doi.org/S0219498820501881. · Zbl 1446.13004
[8] L. El Fadil, On power integral bases for certain pure sextic fields, to appear in Bol. Soc. Paran. Math. · Zbl 1474.11182
[9] L. El Fadil, On power integral bases for certain pure number fields, to appear in Pub. Math. Debrecen. · Zbl 1474.11182
[10] L. El Fadil, On power integral bases for certain pure number fields defined by \(x^{2 4}-m\), to appear in Stud. Sci. Math. Hungar. · Zbl 1474.11182
[11] El Fadil, L., Monte, J. and Nart, E., Newton polygons and \(p\)-integral bases of quartic number fields, J. Algebra Appl.11(4) (2012) 1250073. · Zbl 1297.11134
[12] Funakura, T., On integral bases of pure quartic fields, Math. J. Okayama Univ.26 (1984) 27-41. · Zbl 0563.12003
[13] Gaál, I., Power integral bases in algebraic number fields, Ann. Univ. Sci. Budapest. Sect. Comput.18 (1999) 61-87. · Zbl 0936.11072
[14] Gaál, I., Diophantine Equations and Power Integral Bases, Theory and Algorithm, 2nd edn. (Birkhäuser, Boston, 2019). · Zbl 1465.11090
[15] Gaál, I., Olajos, P. and Pohst, M., Power integral bases in orders of composite fields, Exp. Math.11(1) (2002) 87-90. · Zbl 1020.11064
[16] Gaál, I. and Remete, L., Binomial Thue equations and power integral bases in pure quartic fields, JP J. Algebra Number Theory Appl.32(1) (2014) 49-61. · Zbl 1295.11120
[17] Gaál, I. and Remete, L., Power integral bases and monogenity of pure fields, J. Number Theory173 (2017) 129-146. · Zbl 1419.11118
[18] Hameed, A. and Nakahara, T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Répub. Soc. Roumanie58(106)(4) (2015) 419-433. · Zbl 1363.11094
[19] Hameed, A., Nakahara, T. and Husnine, S. M., On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Res. Math.7 (2011) 19-24. · Zbl 1268.11147
[20] Hasse, H., Zahlentheorie (Akademie-Verlag, Berlin, 1963). · Zbl 1038.11500
[21] Hensel, K., Theorie der Algebraischen Zahlen (Teubner Verlag, Leipzig, Berlin, 1908). · JFM 39.0269.01
[22] Motoda, Y., Nakahara, T. and Shah, S. I. A., On a problem of Hasse, J. Number Theory96 (2002) 326-334. · Zbl 1032.11043
[23] Ore, O., Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann.99 (1928) 84-117. · JFM 54.0191.02
[24] Pethö, A. and Pohst, M., On the indices of multiquadratic number fields, Acta Arith.153(4) (2012) 393-414. · Zbl 1255.11052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.