×

Multi-peak solutions for coupled nonlinear Schrödinger systems in low dimensions. (English) Zbl 1512.35035

This paper investigates the solutions to the following nonlinear Schrödinger system \begin{align*} -\varepsilon^2 \Delta u+P(x)u&=\mu_1u^p+\beta u^{\frac{p-1}2}v^{\frac{p+1}2},\\ -\varepsilon^2 \Delta v+Q(x)v&=\mu_2v^p+\beta u^{\frac{p+1}2}v^{\frac{p-1}2}, \end{align*} in \(\mathbb{R}^N\), where \(3<p<+\infty\), \(N=1,2\), \(\varepsilon>0\) is a small parameter, the potentials \(P,\,Q\) satisfy \(0 < P_0 \le P(x) \le P_1\) and \(Q(x)\) satisfies \(0 < Q_0 \le Q(x) \le Q_1\). By using the Lyapunov-Schmidt reduction argument, this paper constructs the solutions with \(k\) peaks for attractive and repulsive cases. This type of results extend the main results established by S. Peng and Z.-q. Wang [Arch. Ration. Mech. Anal. 208, No. 1, 305–339 (2013; Zbl 1260.35211)] and H. Pi and S. Peng [Discrete Contin. Dyn. Syst. 36, No. 4, 2205–2227 (2016; Zbl 1327.35038)], where the the case \(N=3, p=3\) was considered.

MSC:

35B25 Singular perturbations in context of PDEs
35J47 Second-order elliptic systems
35J61 Semilinear elliptic equations

References:

[1] Alotaibi, T.; Jleli, M.; Samet, B.; Vetro, C., First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities, Z. Angew. Math. Phys., 73, 17 (2022) · Zbl 1492.35294 · doi:10.1007/s00033-022-01784-y
[2] Bartsch, T.; Soave, N., A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272, 4304-4333 (2017) · Zbl 1386.35385 · doi:10.1016/j.jfa.2017.02.019
[3] Bartsch, T.; Soave, N., Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differ. Equ., 58, 22-24 (2019) · Zbl 1409.35076 · doi:10.1007/s00526-018-1476-x
[4] Bartsch, T.; Wang, Z.; Wei, J., Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2, 353-367 (2007) · Zbl 1153.35390 · doi:10.1007/s11784-007-0033-6
[5] Bartsch, T.; Dancer, N.; Wang, Z., A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 2, 345-361 (2010) · Zbl 1189.35074 · doi:10.1007/s00526-009-0265-y
[6] Benboubke, MB, Entropy solutions for elliptic Schrödinger type equations under Fourier boundary conditions, Rend. Circ. Mat. Palermo II Ser. (2022) · Zbl 1518.35331 · doi:10.1007/s12215-022-00822-y
[7] Berestycki, H.; Terracini, S.; Wang, K.; Wei, J., On entire solutions of an elliptic system modeling phase seperations, Adv. Math., 243, 102-126 (2013) · Zbl 1282.35022 · doi:10.1016/j.aim.2013.04.012
[8] Cao, D.; Noussair, ES, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in \({\mathbb{R}}^N \), Ann. Inst. Henri Poincaré Analyse Non Linéaire, 13, 567-588 (1996) · Zbl 0859.35032 · doi:10.1016/s0294-1449(16)30115-9
[9] Cao, D.; Noussair, ES; Yan, S., Existence and uniqueness results on single-peaked solutions of a semilinear problem, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 15, 73-111 (1998) · Zbl 0905.35033 · doi:10.1016/s0294-1449(99)80021-3
[10] Cao, D.; Noussair, ES; Yan, S., Solutions with multiple “peaks” for nonlinear elliptic equations, Proc. R. Soc. Edinb. Sect. A, 129, 235-264 (1999) · Zbl 0928.35048 · doi:10.1017/S030821050002134X
[11] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 397-408 (1986) · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[12] Goubet, O.; Manoubi, I., Standing waves for semilinear Schrödinger equations with discontinuous dispersion, Rend. Circ. Mat. Palermo II Ser, 71, 11591171 (2022) · Zbl 1505.35325 · doi:10.1007/s12215-022-00782-3
[13] Guo, Y.; Li, B.; Wei, J., Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponent in \(\mathbb{R}^3 \), J. Differ. Equ., 256, 3463-3495 (2014) · Zbl 1288.35232 · doi:10.1016/j.jde.2014.02.007
[14] Guo, Y.; Luo, S.; Zou, W., The existence, uniqueness and nonexistence of the ground state to the \(N\)-coupled Schrödinger systems in \(\mathbb{R}^4 (n\le 4)\), Nonlinearity, 31, 314-339 (2018) · Zbl 1378.35032 · doi:10.1088/1361-6544/aa8ca9
[15] He, Q.; Peng, S.; Peng, Y., Existence, non-degeneracy of proportional positive solutions and least energy solutions for a fractional elliptic system, Adv. Differ. Equ., 22, 867-892 (2017) · Zbl 1377.35264
[16] Kwong, M., Uniqueness of positive solutions of \(\Delta u-u+u^p=0 \text{in} \mathbb{R}^n \), Arch. Ration. Mech. Anal., 105, 243-266 (1989) · Zbl 0676.35032 · doi:10.1007/BF00251502
[17] Lin, T.; Wei, J., Ground state of \(N\) coupled nonlinear Schrödinger equations in \(\mathbb{R}^n, n\le 3\), Commun. Math. Phys., 255, 629-653 (2005) · Zbl 1119.35087 · doi:10.1007/s00220-005-1313-x
[18] Lin, T.; Wei, J., Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Analyse Non Linéaire, 22, 403-439 (2005) · Zbl 1080.35143 · doi:10.1016/j.anihpc.2004.03.004
[19] Lin, T.; Wei, J., Spikes in two-component systems of nonlinear Schrödinger equations with trapping potential, J. Differ. Equ., 229, 538-569 (2006) · Zbl 1105.35117 · doi:10.1016/j.jde.2005.12.011
[20] Long, W.; Tang, Z.; Yang, S., Many synchronized vector solutions for a Bose-Einstein system, Proc. R. Soc. Edinb. Sect. A, 150, 3293-3320 (2020) · Zbl 1459.35132 · doi:10.1017/prm.2019.75
[21] Noussair, E.; Yan, S., On positive multipeak solutions of nonlinear elliptic problem, J. Lond. Math. Soc., 62, 213-227 (2000) · Zbl 0977.35048 · doi:10.1112/S002461070000898X
[22] Peng, S.; Pi, H., Spike vector solutions for some coupled nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 36, 2205-2227 (2016) · Zbl 1327.35038
[23] Peng, S.; Wang, Z., Segregated and synchronized vector solutions for nonlinear Schrödinger systems, Arch. Rational. Mech. Anal., 208, 305-339 (2013) · Zbl 1260.35211 · doi:10.1007/s00205-012-0598-0
[24] Peng, S.; Peng, Y.; Wang, Z., On critical systems with Sobolev critical growth, Calc. Var. Partial Differ. Equ., 55, 142 (2016) · Zbl 1364.35091 · doi:10.1007/s00526-016-1091-7
[25] Peng, S.; Wang, Q.; Wang, Z., On coupled nonlinear Schrödinger systems with mixed couplings, Trans. Am. Math. Soc., 371, 7559-7583 (2019) · Zbl 1439.35162 · doi:10.1090/tran/7383
[26] Sirakov, B., Least energy solitary waves for a system of nonlinear Schrödinger equations in \(\mathbb{R}^n \), Commun. Math. Phys., 271, 199-221 (2007) · Zbl 1147.35098 · doi:10.1007/s00220-006-0179-x
[27] Tang, Z.; Xie, H., Multi-scale spike solutions for nonlinear coupled elliptic systems with critical frequency, Nonlinear Differ. Equ. Appl., 28, 25 (2021) · Zbl 1465.35181 · doi:10.1007/s00030-021-00686-8
[28] Wei, J.; Weth, T., Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18, 279-293 (2007) · Zbl 1229.35019
[29] Wei, J.; Weth, T., Radial solutions and phase separation in a system of two Schrödinger equations, Arch. Ration. Mech. Anal., 190, 83-106 (2008) · Zbl 1161.35051 · doi:10.1007/s00205-008-0121-9
[30] Wei, J.; Wu, Y., Ground state of nonlinear Schrödinger systems with mixed couplings, J. Math. Pures Appl., 141, 50-88 (2020) · Zbl 1448.35176 · doi:10.1016/j.matpur.2020.07.012
[31] Wei, J.; Yan, S., Infinitely many solutions for the prescribed scalar curvature problem on \(S^n\), J. Funct. Anal., 258, 3048-3081 (2010) · Zbl 1209.53028 · doi:10.1016/j.jfa.2009.12.008
[32] Wei, J.; Yan, S., Infinitely many solutions for the nonlinear Schrödinger equations in \(\mathbb{R}^N \), Calc. Var. Partial Differ. Equ., 37, 423-439 (2010) · Zbl 1189.35106 · doi:10.1007/s00526-009-0270-1
[33] Wei, J.; Yao, W., Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11, 1003-1011 (2012) · Zbl 1264.35237 · doi:10.3934/cpaa.2012.11.1003
[34] Zhen, M.; Zhang, B.; Rădulescu, V., Normalized solutions for nonlinear coupled fractional systems: low and high perturbations in the attractive case, Discrete Contin. Dyn. Syst., 41, 2653-2676 (2021) · Zbl 1466.35139 · doi:10.3934/dcds.2020379
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.