×

Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}^n}\). (English) Zbl 1147.35098

The paper is concerned with the following system in \(\mathbb{R}^n\), \(n\leq 3\): \[ \Delta u_1 - u_1+\mu_1 u^3_1+\beta u_1 u^2_2=0, \quad \Delta u_2 -\lambda u_2+\mu_2 u^3_2+\beta u^2_1 u_2=0, \qquad u_1, u_2\in H^1(\mathbb{R}^n). \]
\(\lambda\geq1\), \(\mu_1, \mu_2>0\) and \(\beta\in\mathbb{R}\) are parameters. One is interested in solutions \(u=(u_1, u_2)\) with both \(u_1\neq 0\) and \(u_2\neq 0\). The problem is of variational nature, solutions can be obtained as critical points of the associated energy functional \(E:H=H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)\to\mathbb{R}\). A natural constraint is the set
\[ \mathcal{N}=\{u\in H: u_1\neq 0,\;u_2\neq 0,\;E'(u)[u_1,0]=0=E'(u)[0,u_2]\}. \]
The main results of the paper yield parameter ranges for \(\lambda,\beta,\mu_1, \mu_2\) such that \(E\) achieves its infimum on \(\mathcal{N}\) or on the set of radial functions in \(\mathcal{N}\), and parameter ranges where the infimum is not achieved. This improves earlier results of T.-C. Lin and J. Wei [Commun. Math. Phys. 255, No. 3, 629–653 (2005; Zbl 1119.35087)].

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q51 Soliton equations
35J50 Variational methods for elliptic systems

Citations:

Zbl 1119.35087
Full Text: DOI

References:

[1] Akhmediev, N.; Ankiewicz, A., Partially coherent solitons on a finite background, Phys. Rev. Lett., 82, 2661-2664 (1999) · doi:10.1103/PhysRevLett.82.2661
[2] Ambrosetti, A.; Colorado, E., Bound and ground states of coupled nonlinear Schrödinger equations, Comptes Rendus Mathematique, 342, 7, 453-458 (2006) · Zbl 1094.35112 · doi:10.1016/j.crma.2006.01.024
[3] Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. Preprint · Zbl 1153.35390
[4] Buljan, H.; Schwartz, T.; Segev, M.; Soljacic, M., Christoudoulides, D.: Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium, J. Opt. Soc. Am. B., 21, 2, 397-404 (2004) · doi:10.1364/JOSAB.21.000397
[5] Busca, J.; Sirakov, B., Symmetry results for semilinear elliptic systems in the whole space, J. Diff. Eq., 163, 1, 41-56 (2000) · Zbl 0952.35033 · doi:10.1006/jdeq.1999.3701
[6] Busca, J.; Sirakov, B., Harnack type estimates for nonlinear elliptic systems and applications, Ann. Inst. H. Poincaré Anal. Non Lin., 21, 5, 543-590 (2004) · Zbl 1127.35332 · doi:10.1016/j.anihpc.2003.06.001
[7] Christodoulides, D.; Eugenieva, E.; Coskun, T.; Mitchell, M.; Segev, M., Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media, Phys. Rev. E, 63, 035601 (2001) · doi:10.1103/PhysRevE.63.035601
[8] Coffman, C. V., Uniqueness of the ground state solution for \[{-\Delta u + u = u^3}\] and a variational characterization of other solutions, Arch. Rat. Mech. Anal., 46, 81-95 (1972) · Zbl 0249.35029
[9] de Figueiredo, D. G., Nonlinear elliptic systems, Anais da Academia Brasileira de Ciências, 72, 4, 453-469 (2000) · Zbl 0970.35050
[10] Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^n} \) . Adv. Math. Studies 7A, 209-243 (1979) · Zbl 0425.35020
[11] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. 2nd edition. Berlin-Heidelberg-Newyork: Springer-Verlag,1983 · Zbl 0562.35001
[12] Hioe, F. T., Solitary waves for N coupled nonlinear Schrödinger equations. Phys, Rev. Lett., 82, 1152-1155 (1999) · doi:10.1103/PhysRevLett.82.1152
[13] Kutuzov, V.; Petnikova, V. M.; Shuvalov, V. V.; Vysloukh, V. A., Cross-modulation coupling of incoherent soliton modes in photorefractive crystals, Phys. Rev. E, 57, 6056-6065 (1998) · doi:10.1103/PhysRevE.57.6056
[14] Kwong, M.K.: Uniqueness of positive solutions of \({-\Delta u + u = u^p}\) in \({\mathbb{R}^n} \) . Arch. Rat. Mech. Anal. 105, 243-266 (1989) · Zbl 0676.35032
[15] Lieb, E., Loss, M.: Analysis. Providence, RI: Amer. Math. Soc. 1996 · Zbl 0873.26002
[16] Lin, T. C.; Wei, J., Ground state of N coupled nonlinear Schrödinger equations in \[{\mathbb{R}^n, N\le 3} \], Commun. Math. Phys., 255, 629-653 (2005) · Zbl 1119.35087
[17] Lin, T. C.; Wei, J., Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Anal. Non-Lin., 22, 4, 403-439 (2005) · Zbl 1080.35143 · doi:10.1016/j.anihpc.2004.03.004
[18] Maia, L.; Montefusco, E.; Pellacci, B., Positive solutions for a weakly coupled Schrödinger system, J. Differ. Eqs., 229, 743-767 (2006) · Zbl 1104.35053 · doi:10.1016/j.jde.2006.07.002
[19] Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh. Eksp. Teor. Fiz. 65, 505-516 (1973), English translation in J. Exp. Th. Phys. 38, 248-256 (1974)
[20] Mitchell, M.; Chen, Z.; Shih, M.; Segev, M., Self-trapping of partially spatially incoherent light, Phys. Rev. Lett., 77, 490-493 (1996) · doi:10.1103/PhysRevLett.77.490
[21] Mitchell, M.; Segev, M., Self-trapping of incoherent white light, Nature (London), 387, 880-882 (1997) · doi:10.1038/43079
[22] Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics 65, Providence, RI:Amer. Math. Soc., 1986 · Zbl 0609.58002
[23] Willem, M., Minimax methods (1996), Berlin-Heidelberg-Newyork: Springer, Berlin-Heidelberg-Newyork
[24] Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz. 61, 118-134 (1971), English translation in J. Exp. Th. Phys. 34, 62-69 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.