×

Spikes in two coupled nonlinear Schrödinger equations. (English) Zbl 1080.35143

Summary: Here we study the interaction and the configuration of spikes in a double condensate by analyzing least energy solutions of two coupled nonlinear Schrödinger equations which model Bose-Einstein condensates of two different hyperfine spin states. When the interspecies scattering length is positive and large enough, spikes of a double condensate repel each other and behave like two separate spikes. In contrast, spikes of a double condensate attract each other and behave like a single spike if the interspecies scattering length is negative and large enough. Our mathematical arguments can prove such physical phenomena. We first use Nehari’s manifold to construct least energy solutions, and then use some techniques of singular perturbation problems to derive the asymptotic behavior of least energy solutions. It is shown that the interaction term determines the locations of the two spikes and the asymptotic shape of least energy solutions.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
82D10 Statistical mechanics of plasmas
35B45 A priori estimates in context of PDEs
35J40 Boundary value problems for higher-order elliptic equations

References:

[1] Bates, P.; Fusco, G., Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations, 160, 283-356 (2000) · Zbl 0990.35016
[2] Bates, P.; Dancer, E. N.; Shi, J., Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations, 4, 1-69 (1999) · Zbl 1157.35407
[3] Conti, M.; Terracini, S.; Verzini, G., Nehari’s problem and competing species system, Ann. Inst. H. Poincaré, 19, 6, 871-888 (2002) · Zbl 1090.35076
[4] del Pino, M.; Felmer, P., Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J., 48, 3, 883-898 (1999) · Zbl 0932.35080
[5] del Pino, M.; Felmer, P.; Wei, J., On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal., 31, 63-79 (1999) · Zbl 0942.35058
[6] del Pino, M.; Felmer, P.; Wei, J., On the role of distance function in some singularly perturbed problems, Comm. Partial Differential Equations, 25, 155-177 (2000) · Zbl 0949.35054
[7] del Pino, M.; Felmer, P.; Wei, J., Multiple peak solutions for some singular perturbation problems, Cal. Var. Partial Differential Equations, 10, 119-134 (2000) · Zbl 0974.35041
[8] Donley, E. A.; Claussen, N. R.; Cornish, S. L.; Roberts, J. L.; Cornell, E. A.; Wieman, C. E., Dynamics of collapsing and exploding Bose-Einstein condensates, Nature, 19, 412, 295-299 (2001)
[9] Dancer, E. N.; Wei, J., On the location of spike s of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, 157, 82-101 (1999) · Zbl 1087.35507
[10] Dancer, E. N.; Yan, S., Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math., 189, 241-262 (1999) · Zbl 0933.35070
[11] Estaban, M. J.; Lions, P. L., Existence and non-existence results for semilinear problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 93, 1-14 (1982) · Zbl 0506.35035
[12] Esry, B. D.; Greene, C. H.; Burke, J. P.; Bohn, J. L., Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78, 3594-3597 (1997)
[13] Gidas, B.; Ni, W.-M.; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in \(R^n\), (Mathematical Analysis and Applications, Part A. Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Stud., vol. 7A (1981), Academic Press: Academic Press New York), 369-402 · Zbl 0469.35052
[14] Gui, C.; Wei, J., Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations, 158, 1-27 (1999) · Zbl 1061.35502
[15] Gui, C.; Wei, J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52, 522-538 (2000) · Zbl 0949.35052
[16] Gui, C.; Wei, J.; Winter, M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17, 249-289 (2000)
[17] Grossi, M.; Pistoia, A.; Wei, J., Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. Partial Differential Equations, 11, 143-175 (2000) · Zbl 0964.35047
[18] Gupta, S.; Hadzibabic, Z.; Zwierlein, M. W.; Stan, C. A.; Dieckmann, K.; Schunck, C. H.; van Kempen, E. G.M.; Verhaar, B. J.; Ketterle, W., Radio-frequency spectroscopy of ultracold fermions, Science, 300, 1723-1726 (2003)
[19] Hall, D. S.; Matthews, M. R.; Ensher, J. R.; Wieman, C. E.; Cornell, E. A., Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett., 81, 1539-1542 (1998)
[20] Kwong, M. K., Uniqueness of positive solutions of \(\Delta u - u + u^p = 0\) in \(R^n\), Arch. Rational Mech. Anal., 105, 243-266 (1989) · Zbl 0676.35032
[21] Li, Y.-Y., On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations, 23, 487-545 (1998) · Zbl 0898.35004
[22] Li, Y.-Y.; Nirenberg, L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51, 1445-1490 (1998) · Zbl 0933.35083
[23] Lieband, E.; Loss, M., Analysis (1996), American Mathematical Society · Zbl 0873.26002
[24] Myatt, C. J.; Burt, E. A.; Ghrist, R. W.; Cornell, E. A.; Wieman, C. E., Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett., 78, 586-589 (1997)
[25] Ni, W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45, 9-18 (1998) · Zbl 0917.35047
[26] Ni, W.-M.; Takagi, I., On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41, 819-851 (1991) · Zbl 0754.35042
[27] Ni, W.-M.; Takagi, I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., 70, 247-281 (1993) · Zbl 0796.35056
[28] Ni, W.-M.; Wei, J., On the location and profile of spike-Layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48, 731-768 (1995) · Zbl 0838.35009
[29] Timmermans, E., Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 81, 5718-5721 (1998)
[30] Troy, W., Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations, 42, 3, 400-413 (1981) · Zbl 0486.35032
[31] Wei, J., On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, 129, 315-333 (1996) · Zbl 0865.35011
[32] Wei, J., On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J., 50, 159-178 (1998) · Zbl 0918.35024
[33] Wei, J., On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Differential Integral Equations, 13, 15-45 (2000) · Zbl 0970.35034
[34] Wei, J., On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations, 134, 104-133 (1997) · Zbl 0873.35007
[35] Wei, J.; Winter, M., Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 459-492 (1998) · Zbl 0910.35049
[36] Wei, J.; Winter, M., Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc., 59, 585-606 (1999) · Zbl 0922.35025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.