×

An efficient method to compute solitary wave solutions of fractional Korteweg-de Vries equations. (English) Zbl 1499.65185

Summary: Considered here is an efficient technique to compute approximate profiles of solitary wave solutions of fractional Korteweg-de Vries equations. The numerical method is based on a fixed-point iterative algorithm along with extrapolation techniques of acceleration. This combination improves the performance in both the velocity of convergence and the computation of profiles for limiting values of the fractional parameter. The algorithm is described and numerical experiments of validation are presented. The accuracy attained by the procedure can be used to investigate additional properties of the waves. This approach is illustrated here by analysing the speed-amplitude relation.

MSC:

65H10 Numerical computation of solutions to systems of equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65Z05 Applications to the sciences

References:

[1] Alvarez, J.; Durán, A., Petviashvili type methods for traveling wave computations: I. Analysis of convergence, J. Comput. Appl. Math., 266, 39-51 (2014) · Zbl 1293.65079 · doi:10.1016/j.cam.2014.01.015
[2] Alvarez, J.; Durán, A., Petviashvili type methods for traveling wave computations: II. Acceleration with vector extrapolation methods, Math. Comput. Simul., 123, 19-36 (2016) · Zbl 1540.65156 · doi:10.1016/j.matcom.2015.10.015
[3] Alvarez, J.; Durán, A., Numerical generation of periodic traveling wave solutions of some nonlinear dispersive wave systems, J. Comput. Appl. Math., 316, 29-39 (2017) · Zbl 1395.65112 · doi:10.1016/j.cam.2016.08.037
[4] Angulo Pava, J., Nonlinear Dispersive Equations, Existence and Stability of Solitary and Periodic Traveling Wave Solutions (2009), AMS: AMS, Providence, RI · Zbl 1202.35246
[5] Angulo Pava, J., Stability properties of solitary waves for fractional KdV and BBM equations, preprint (2017). Available at http://www.arxiv.org/abs/1701.06221.
[6] Arnesen, M. N., Existence of solitary-wave solutions to nonlocal equations, Discrete Contin. Dyn. Syst., 36, 3483-3510 (2016) · Zbl 1333.35229 · doi:10.3934/dcds.2016.36.3483
[7] Bona, J. L.; Dougalis, V. A.; Karakashian, O. A.; McKinney, W. R., Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation, Phil. Trans. R. Soc. London A, 351, 107-164 (1995) · Zbl 0824.65095 · doi:10.1098/rsta.1995.0027
[8] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2000), Dover Publications: Dover Publications, New York
[9] Brezinski, C., Convergence acceleration during the 20th century, J. Comput. Appl. Math., 122, 1-21 (2000) · Zbl 0976.65003 · doi:10.1016/S0377-0427(00)00360-5
[10] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer: Springer, New York, Heidelberg, Berlin · Zbl 0658.76001
[11] Dinvay, E.; Moldabayev, D.; Dutykh, D.; Kalisch, H., The Whitham equation with surface tension, Nonlinear Dyn., 88, 1125-1138 (2017) · Zbl 1375.76025 · doi:10.1007/s11071-016-3299-7
[12] Dougalis, V. A.; Durán, A.; López-Marcos, M. A.; Mitsotakis, D. E., A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems, J. Nonlinear Sci., 17, 569-607 (2007) · Zbl 1135.35070 · doi:10.1007/s00332-007-9004-8
[13] Ehrnström, M.; Groves, M. D.; Wahlen, E., On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type, Nonlinearity, 25, 2903-2936 (2012) · Zbl 1252.76014 · doi:10.1088/0951-7715/25/10/2903
[14] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb. A, 142, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[15] Frank, R. L.; Lenzmann, E., Uniqueness of nonlinear ground states for fractional Laplacians in \(####\), Acta Math., 210, 261-318 (2013) · Zbl 1307.35315 · doi:10.1007/s11511-013-0095-9
[16] de Frutos, J.; Sanz-Serna, J. M., An easily implementable fourth-order method for the time integration of wave problems, J. Comput. Phys., 103, 160-168 (1992) · Zbl 0761.65074 · doi:10.1016/0021-9991(92)90331-R
[17] Grillakis, M.; Shatah, J.; Strauss, W. A., Stability theory of solitary waves in the presence of symmetry: I, J. Funct. Anal., 74, 160-197 (1987) · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[18] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations (2004), Springer: Springer, New York, Heidelberg, Berlin
[19] Herr, S.; Ionescu, A. D.; Kenig, C. E.; Koch, H., A para-differential renormalization technique for nonlinear dispersive equations, Comm. Partial Diff. Equ., 35, 1827-1875 (2010) · Zbl 1214.35089 · doi:10.1080/03605302.2010.487232
[20] Jbilou, K.; Sadok, H., Vector extrapolation methods. Applications and numerical comparison, J. Comput. Appl. Math., 122, 149-165 (2000) · Zbl 0974.65034 · doi:10.1016/S0377-0427(00)00357-5
[21] Kalisch, H.; Moldabayev, D.; Verdier, O., A numerical study of nonlinear dispersive wave models with SpecTraWave, Electron. J. Diff. Equ., 62, 1-23 (2017) · Zbl 1370.35074
[22] Kapitula, T.; Stefanov, A., A Hamiltonia-Krein (instability) index theory for solitary waves to KdV-like eigenvalue problems, Stud. Appl. Math., 132, 183-211 (2014) · Zbl 1288.35422 · doi:10.1111/sapm.12031
[23] Klein, C.; Saut, J.-C., A numerical approach to blow-up issues for dispersive perturbations of Burges’ equation, Phys. D, 295-296, 46-65 (2015) · Zbl 1364.35047 · doi:10.1016/j.physd.2014.12.004
[24] Lannes, D., Water Waves: Mathematical Theory and Asymptotics (2013), AMS: AMS, Providence, RI · Zbl 1410.35003
[25] Lannes, D.; Saut, J.-C., Remarks on the full dispersion Kadomtsev-Petviashvli equation, Kinet. Related Models AIMS, 6, 4, 989-1009 (2013) · Zbl 1292.35266 · doi:10.3934/krm.2013.6.989
[26] Linares, F.; Pilod, D.; Saut, J.-C., Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, SIAM J. Math. Anal., 46, 2, 1505-1537 (2014) · Zbl 1294.35124 · doi:10.1137/130912001
[27] Linares, F.; Pilod, D.; Saut, J.-C., Remarks on the orbital stability of ground state solutions of fKdV and related equations, Adv. Diff. Equ., 20, 835-858 (2015) · Zbl 1325.35195
[28] Martel, Y.; Merle, F.; Raphaël, V., Blow up for the critical gKdV equation I: Dynamics near the soliton, Acta Math., 212, 27-45 (2014) · Zbl 1301.35137 · doi:10.1007/s11511-014-0109-2
[29] Martel, Y.; Merle, F.; Raphaël, P., Blow up for the critical gKdV equation II: Minimal mass dynamics, J. Eur. Math. Soc., 17, 1855-1925 (2015) · Zbl 1326.35320 · doi:10.4171/JEMS/547
[30] Martel, Y.; Merle, F.; Raphaël, V., Blow up for the critical gKdV equation III: Exotic regimes, Ann. Sc. Norm. Sup. Pisa, 14, 575-631 (2015) · Zbl 1331.35307
[31] Moldabayev, D.; Kalisch, H.; Dutykh, D., The Whitham equation as a model for surface water waves, Phys. D, 309, 99-107 (2015) · Zbl 1364.76032 · doi:10.1016/j.physd.2015.07.010
[32] Pelinovsky, D., Spectral stability of nonlinear waves in KdV-type evolution equations, in Spectral Analysis, Stability, Bifurcation in Modern Nonlinear Physical Systems, O.N. Kirilov and D.E. Pelinovsky, eds., Mechanical Engineering and Solid Mechanics Series, Wiley-ISTE Ltd., London, 2013, pp. 377-398.
[33] Pelinovsky, D. E.; Stepanyants, Y. A., Convergence of Petviashvili’s iteration method for numerical approximation of stationary solutions of nonlinear wave equations, SIAM J. Numer. Anal., 42, 1110-1127 (2004) · Zbl 1086.65098 · doi:10.1137/S0036142902414232
[34] Petviashvili, V. I., Equation of an extraordinary soliton, Soviet J. Plasma Phys., 2, 257-258 (1976)
[35] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[36] Saut, J. C., Sur quelques généralisations de l’ équation de KdV I, J. Math. Pures Appl., 58, 21-61 (1979) · Zbl 0449.35083
[37] Sidi, A., Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms, SIAM J. Numer. Anal., 23, 197-209 (1986) · Zbl 0612.65001 · doi:10.1137/0723014
[38] Sidi, A., Practical Extrapolation Methods, Theory and Applications (2003), Cambridge University Press: Cambridge University Press, New York · Zbl 1041.65001
[39] Sidi, A.; Ford, W. F.; Smith, D. A., Acceleration of convergence of vector sequences, SIAM J. Numer. Anal., 23, 178-196 (1986) · Zbl 0596.65016 · doi:10.1137/0723013
[40] Smith, D. A.; Ford, W. F.; Sidi, A., Extrapolation methods for vector sequences, SIAM Rev., 29, 199-233 (1987) · Zbl 0622.65003 · doi:10.1137/1029042
[41] Weinstein, M. I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., 39, 51-67 (1986) · Zbl 0594.35005 · doi:10.1002/cpa.3160390103
[42] Weinstein, M. I., Existence and dynamic stability of solitary-wave solutions of equations arising in long wave propagation, Commun. Partial Differ. Equ., 12, 1133-1173 (1987) · Zbl 0657.73040 · doi:10.1080/03605308708820522
[43] Whitham, G. B., Variational methods and applications to water waves, Proc. R. Soc. A, 299, 6-25 (1967) · Zbl 0163.21104 · doi:10.1098/rspa.1967.0119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.