×

Blow up for the critical generalized Korteweg-de Vries equation. I: Dynamics near the soliton. (English) Zbl 1301.35137

Authors’ abstract: We consider the quintic generalized Korteweg-de Vries equation (gKdV) \[ u_t +(u_{xx}+u^5)_x=0, \] which is a canonical mass critical problem, for initial data in \(H^{1}\) close to the soliton. In earlier works on this problem, finite- or infinite-time blow up was proved for non-positive energy solutions, and the solitary wave was shown to be the universal blow-up profile. For well-localized initial data, finite-time blow up with an upper bound on blow-up rate was obtained in [Y. Martel and F. Merle, J. Am. Math. Soc. 15, No. 3, 617–664 (2002; Zbl 0996.35064)].
In this paper, we fully revisit the analysis close to the soliton for gKdV in light of the recent progress on the study of critical dispersive blow-up problems. For a class of initial data close to the soliton, we prove that three scenarios only can occur: (i) the solution leaves any small neighborhood of the modulated family of solitons in the scale invariant \(L^2\) norm; (ii) the solution is global and converges to a soliton as \(t\to\infty\); (iii) the solution blows up in finite time \(T\) with speed \[ \|u_x(t)\| _{L^2}\sim\frac{C(u_0)}{T-t}\quad\text{as }t\to T. \]
Moreover, the regimes (i) and (iii) are stable. We also show that non-positive energy yields blow up in finite time, and obtain the characterization of the solitary wave at the zero-energy level as was done for the mass critical non-linear Schrödinger equation in [F. Merle and P. Raphaël, J. Am. Math. Soc. 19, No. 1, 37–90 (2006; Zbl 1075.35077)].

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
35B44 Blow-up in context of PDEs
35C08 Soliton solutions
Full Text: DOI

References:

[1] Bourgain, J. & Wang, W., Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Sc. Norm. Super. Pisa Cl. Sci., 25 (1997), 197–215 (1998). · Zbl 1043.35137
[2] Côte R.: Construction of solutions to the L 2-critical KdV equation with a given asymptotic behaviour. Duke Math. J., 138, 487–531 (2007) · Zbl 1130.35112 · doi:10.1215/S0012-7094-07-13835-3
[3] Côte, R., Martel, Y. & Merle, F., Construction of multi-soliton solutions for the L 2-supercritical gKdV and NLS equations. Rev. Mat. Iberoam., 27 (2011), 273–302. · Zbl 1273.35234
[4] Duyckaerts, T. & Merle, F., Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP, 2008 (2008), Art ID rpn002, 67 pp. · Zbl 1159.35043
[5] Duyckaerts T., Merle F.: Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal., 18, 1787–1840 (2009) · Zbl 1232.35150 · doi:10.1007/s00039-009-0707-x
[6] Duyckaerts T., Roudenko S.: Threshold solutions for the focusing 3D cubic Schrödinger equation. Rev. Mat. Iberoam., 26, 1–56 (2010) · Zbl 1195.35276 · doi:10.4171/RMI/592
[7] Fibich, G., Merle, F. & Raphaël, P., Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation. Phys. D, 220 (2006), 1–13. · Zbl 1100.35097
[8] Hillairet, M. & Raphaël, P., Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation. Anal. PDE, 5 (2012), 777–829. · Zbl 1329.35207
[9] Kato, T., On the Cauchy problem for the (generalized) Korteweg–de Vries equation, in Studies in Applied Mathematics, Adv. Math. Suppl. Stud., 8, pp. 93–128. Academic Press, New York, 1983. · Zbl 0549.34001
[10] Kenig, C. E. & Merle, F., Global well-posedness, scattering and blow-up for the energycritical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 166 (2006), 645–675. · Zbl 1115.35125
[11] Kenig, C. E., Ponce, G. & Vega, L., Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Comm. Pure Appl. Math., 46 (1993), 527–620. · Zbl 0808.35128
[12] Krieger, J., Nakanishi, K. & Schlag, W., Global dynamics away from the ground state for the energy-critical nonlinear wave equation. Amer. J. Math., 135 (2013), 935–965. · Zbl 1307.35170
[13] Krieger J., Schlag W.: Non-generic blow-up solutions for the critical focusing NLS in 1-D. J. Eur. Math. Soc. (JEMS), 11, 1–125 (2009) · Zbl 1163.35035 · doi:10.4171/JEMS/143
[14] Krieger, J., Schlag, W. & Tataru, D., Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math., 171 (2008), 543–615. · Zbl 1139.35021
[15] Landman, M. J., Papanicolaou, G. C., Sulem, C. & Sulem, P.-L., Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A, 38:8 (1988), 3837–3843.
[16] Martel, Y. & Merle, F., A Liouville theorem for the critical generalized Korteweg–de Vries equation. J. Math. Pures Appl., 79 (2000), 339–425. · Zbl 0963.37058
[17] Martel, Y. & Merle, F., Instability of solitons for the critical generalized Korteweg–de Vries equation. Geom. Funct. Anal., 11 (2001), 74–123. · Zbl 0985.35071
[18] Martel, Y. & Merle, F., Blow up in finite time and dynamics of blow up solutions for the L 2-critical generalized KdV equation. J. Amer. Math. Soc., 15 (2002), 617–664. · Zbl 0996.35064
[19] Martel, Y. & Merle, F., Nonexistence of blow-up solution with minimal L 2-mass for the critical gKdV equation. Duke Math. J., 115 (2002), 385–408. · Zbl 1033.35102
[20] Martel, Y. & Merle, F., Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. of Math., 155 (2002), 235–280. · Zbl 1005.35081
[21] Martel Y., Merle F.: Description of two soliton collision for the quartic gKdV equation. Ann. of Math., 174, 757–857 (2011) · Zbl 1300.37045 · doi:10.4007/annals.2011.174.2.2
[22] Martel, Y., Merle, F. & Raphaël, P., Blow up for the critical gKdV equation II: minimal mass dynamics. Preprint, 2012. arXiv:1204.4624 [math.AP]. · Zbl 1326.35320
[23] Martel, Y., Merle, F. & Raphaël, P., Blow up for the critical gKdV equation III: exotic regimes. To appear in Ann. Sc. Norm. Super. Pisa Cl. Sci.. arXiv:1209.2510 [math.AP]. · Zbl 1331.35307
[24] Martel, Y., Merle, F. & Tsai, T.-P., Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations. Duke Math. J., 133 (2006), 405–466. · Zbl 1099.35134
[25] Merle F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J., 69, 427–454 (1993) · Zbl 0808.35141 · doi:10.1215/S0012-7094-93-06919-0
[26] Merle F.: Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Amer. Math. Soc., 14, 555–578 (2001) · Zbl 0970.35128 · doi:10.1090/S0894-0347-01-00369-1
[27] Merle, F. & Raphaël, P., Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation. Geom. Funct. Anal., 13 (2003), 591–642. · Zbl 1061.35135
[28] Merle, F. & Raphaël, P., On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math., 156 (2004), 565–672. · Zbl 1067.35110
[29] Merle, F. & Raphaël, P., The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. of Math., 161 (2005), 157–222. · Zbl 1185.35263
[30] Merle, F. & Raphaël, P., Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Comm. Math. Phys., 253 (2005), 675–704. · Zbl 1062.35137
[31] Merle, F. & Raphaël, P., On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation. J. Amer. Math. Soc., 19 (2006), 37–90. · Zbl 1075.35077
[32] Merle, F., Raphaël, P. & Rodnianski, I., Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math., 193 (2013), 249–365. · Zbl 1326.35052
[33] Merle, F., Raphaël, P. & Szeftel, J., The instability of Bourgain–Wang solutions for the L 2. critical NLS. Amer. J. Math., 135 (2013), 967–1017. · Zbl 1294.35145
[34] Nakanishi, & K., Schlag, W., Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation. J. Differential Equations, 250:5 (2011), 2299–2333. · Zbl 1213.35307
[35] Nakanishi, K. & Schlag, W., Global dynamics above the ground state for the nonlinear Klein–Gordon equation without a radial assumption. Arch. Ration. Mech. Anal., 203 (2012), 809–851. · Zbl 1256.35138
[36] Nakanishi, K. & Schlag, W., Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. Partial Differential Equations, 44 (2012), 1–45. · Zbl 1237.35148
[37] Perelman G.: On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré, 2, 605–673 (2001) · Zbl 1007.35087 · doi:10.1007/PL00001048
[38] Raphaël, P., Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation. Math. Ann., 331 (2005), 577–609. · Zbl 1082.35143
[39] Raphaël, P. & Rodnianski, I., Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems. Publ. Math. Inst. Hautes Études Sci., 115 (2012), 1–122. · Zbl 1284.35358
[40] Raphaël, P. & Schweyer, R., Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow. Comm. Pure Appl. Math., 66 (2013), 414–480. · Zbl 1270.35136
[41] Raphaël, P. & Szeftel, J., Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Amer. Math. Soc., 24 (2011), 471–546. · Zbl 1218.35226
[42] Rodnianski, I. & Sterbenz, J., On the formation of singularities in the critical O(3) {\(\sigma\)}.-model. Ann. of Math., 172 (2010), 187–242. · Zbl 1213.35392
[43] Weinstein M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys., 87, 567–576 (1982/83) · Zbl 0527.35023
[44] Weinstein M. I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal., 16, 472–491 (1985) · Zbl 0583.35028 · doi:10.1137/0516034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.