×

A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems. (English) Zbl 1135.35070

Summary: In this paper we study, some aspects of stability of solitary-wave solutions of the Bona-Smith systems of equations from a numerical point of view. These systems are a family of Boussinesq-type equations, originally proposed for modelling the two-way propagation of one-dimensional long waves of small amplitude in an open channel of water of constant depth. We study numerically the behavior of solitary waves of these systems under small and large perturbations with the aim of illuminating their long-time asymptotic stability properties and, in the case of large perturbations, examining, among other, phenomena of possible blow-up of the perturbed solutions in finite time.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76B25 Solitary waves for incompressible inviscid fluids
35B25 Singular perturbations in context of PDEs
76M10 Finite element methods applied to problems in fluid mechanics
35Q51 Soliton equations
35B35 Stability in context of PDEs
Full Text: DOI

References:

[1] J. P. Albert, J. L. Bona, and D. Henry. Sufficient conditions for stability of solitary-wave solutions of model equations for long waves. Physica D, 24:343–366, 1987. · Zbl 0634.35079 · doi:10.1016/0167-2789(87)90084-4
[2] D. C. Antonopoulos. The Boussinesq system of equations: Theory and numerical analysis. Ph.D. thesis. University of Athens, 2000 (in Greek). · Zbl 0976.76015
[3] D. C. Antonopoulos and V. A. Dougalis. Numerical approximation of Boussinesq systems. In A. Bermudez et al., editors, Proceedings of the 5th International Conference on Mathematical and Numerical Aspects of Wave Propagation, pages 265–269. SIAM, Philadelphia, 2000. · Zbl 0976.76015
[4] D. C. Antonopoulos, V. A. Dougalis, and D. E. Mitsotakis. Theory and numerical analysis of the Bona–Smith type systems of Boussinesq equations (to appear). · Zbl 1303.76082
[5] T. B. Benjamin. The stability of solitary waves. Proc. R. Soc. Lond. Ser. A, 328:153–183, 1972. · doi:10.1098/rspa.1972.0074
[6] J. L. Bona. On the stability theory of solitary waves. Proc. R. Soc. Lond. Ser. A, 344:363–374, 1975. · Zbl 0328.76016 · doi:10.1098/rspa.1975.0106
[7] J. L. Bona and M. Chen. A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D, 116:191–224, 1998. · Zbl 0962.76515 · doi:10.1016/S0167-2789(97)00249-2
[8] J. L. Bona, M. Chen, and J.-C. Saut. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: I. Derivation and linear theory. J. Nonlinear Sci., 12:283–318, 2002. · Zbl 1022.35044 · doi:10.1007/s00332-002-0466-4
[9] J. L. Bona, M. Chen, and J.-C. Saut. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory. Nonlinearity, 17:925–952, 2004. · Zbl 1059.35103 · doi:10.1088/0951-7715/17/3/010
[10] J. L. Bona, V. A. Dougalis, O. A. Karakashian, and W. R. McKinney. Conservative, high-order numerical schemes for the generalized Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. Ser. A, 351:107–164, 1995. · Zbl 0824.65095 · doi:10.1098/rsta.1995.0027
[11] J. L. Bona, W. R. McKinney, and J. M. Restrepo. Unstable solitary-wave solutions of the generalized regularized long-wave equation. J. Nonlinear Sci., 10:603–638, 2000. · Zbl 0972.35131
[12] J. L. Bona and R. L. Sachs. The existence of internal solitary waves in a two-fluid system near the KdV limit. Geophys. Astrophys. Fluid Dyn., 48:25–51, 2000. · Zbl 0708.76136 · doi:10.1080/03091928908219524
[13] J. L. Bona and R. Smith. A model for the two-way propagation of water waves in a channel. Math. Proc. Camb. Philos. Soc., 79:167–182, 1976. · Zbl 0332.76007 · doi:10.1017/S030500410005218X
[14] J. L. Bona, P. E. Souganidis, and W. A. Strauss. Stability and instability of solitary waves of KdV type. Proc. R. Soc. Lond. Ser. A, 411:395–412, 1987. · Zbl 0648.76005 · doi:10.1098/rspa.1987.0073
[15] J. V. Boussinesq. Théorie des ondes et des remous qui se propagent le long d’ un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl., 17:55–108, 1872. · JFM 04.0493.04
[16] J. V. Boussinesq. Essai sur la théorie des eaux courants. Mém. prés. div. sav. Acad. des Sci. Inst. Fr. (sér. 2), 23:1–680, 1877.
[17] M. Chen. Exact traveling-wave solutions to bi-directional wave equations. Int. J. Theor. Phys., 37:1547–1567, 1998. · Zbl 1097.35115 · doi:10.1023/A:1026667903256
[18] M. Chen. Solitary-wave and multipulsed traveling-wave solutions of Boussinesq systems. Appl. Anal., 75:213–240, 2000. · Zbl 1034.35108 · doi:10.1080/00036810008840844
[19] V. A. Dougalis and D. E. Mitsotakis. Solitary waves of the Bona–Smith system. In D. Fotiadis and C. Massalas, editors, Advances in Scattering Theory and Biomedical Engineering, pages 286–294. World Scientific, River Edge, 2004.
[20] A. Durán and M. A. López-Marcos. Conservative numerical methods for solitary wave interactions. J. Phys. A: Math. Gen., 36:7761–7770, 2003. · Zbl 1038.35091 · doi:10.1088/0305-4470/36/28/306
[21] K. El Dika. Asymptotic stability of solitary waves for the Benjamin–Bona–Mahony equation. Discrete. Contin. Dyn. Syst., 13:583–622, 2005. · Zbl 1083.35019 · doi:10.3934/dcds.2005.13.583
[22] M. Grillakis, J. Shatah, and W. A. Strauss. Stability of solitary waves in the presence of symmetry: I. J. Funct. Anal., 74:170–197, 1987. · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[23] T. Kato. Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin, 1980. · Zbl 0435.47001
[24] Yi A. Li. Hamiltonian structure and linear stability of solitary waves of the Green–Naghdi equation. J. Nonlinear Math. Phys., 9:99–105, 2002. Suppl. I. · Zbl 1362.35079 · doi:10.2991/jnmp.2002.9.s1.9
[25] Y. Martel and F. Merle. Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Rat. Mech. Anal., 157:219–254, 2001. · Zbl 0981.35073 · doi:10.1007/s002050100138
[26] J. R. Miller and M. I. Weinstein. Asymptotic stability of solitary waves for the Regularized Long-Wave equation. Commun. Pure Appl. Math., 49:399–441, 1996. · Zbl 0854.35102 · doi:10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7
[27] R. L. Pego, P. Smereka, and M. I. Weinstein. Oscillatory instability of solitary waves in a continuum model of lattice vibrations. Nonlinearity, 8:921–941, 1995. · Zbl 0858.35014 · doi:10.1088/0951-7715/8/6/003
[28] R. L. Pego and M. I. Weinstein. Asymptotic stability of solitary waves. Commun. Math. Phys., 164:305–349, 1994. · Zbl 0805.35117 · doi:10.1007/BF02101705
[29] R. L. Pego and M. I. Weinstein. Convective linear stability of solitary waves for Boussinesq equations. Stud. Appl. Math., 99:311–375, 1997. · Zbl 0889.35079 · doi:10.1111/1467-9590.00063
[30] B. Pelloni. Spectral methods for the numerical solution of nonlinear dispersive wave equations. Ph.D. thesis, Yale University, 1996. · Zbl 0871.90025
[31] B. Pelloni and V. A. Dougalis. Numerical modelling of two-way propagation of nonlinear dispersive waves. Math. Comput. Simul., 55:595–606, 2001. · Zbl 0989.76060 · doi:10.1016/S0378-4754(00)00305-0
[32] B. Pelloni and V. A. Dougalis. Numerical solutions of some nonlocal, nonlinear, dispersive wave equations. J. Nonlin. Sci., 10:1–22, 2000. · Zbl 0965.65122 · doi:10.1007/s003329910001
[33] D. H. Peregrine. Equations for water waves and the approximations behind them. In R. E. Meyer, editor, Waves on Beaches and Resulting Sediment Transport, pages 95–121. Academic Press, New York, 1972.
[34] M. Reed and B. Simon. Analysis of Operators IV. Academic Press, New York, 1978. · Zbl 0401.47001
[35] P. C. Schuur. Asymptotic Analysis of Soliton Problems: An Inverse Scattering Approach, volume 1232 of Lecture Notes in Mathematics. Springer, Berlin, 1986. · Zbl 0643.35003
[36] P. Smereka. A remark on the solitary wave stability for a Boussinesq equation. In L. Debnath, editor, Nonlinear Dispersive Wave Systems, pages 255–263. World Scientific, Singapore, 1992.
[37] J. F. Toland. Solitary wave solutions for a model of the two-way propagation of water waves in a channel. Math. Proc. Camb. Philos. Soc., 90:343–360, 1981. · Zbl 0474.76032 · doi:10.1017/S0305004100058801
[38] J. F. Toland. Uniqueness and a priori bounds for certain homoclinic orbits of a Boussinesq system modelling solitary water waves. Commun. Math. Phys., 94:239–254, 1984. · Zbl 0557.76028 · doi:10.1007/BF01209303
[39] J. F. Toland: Existence of symmetric homoclinic orbits for systems of Euler–Lagrange equations. In Proceedings of Symposia in Pure Mathematics, volume 45, Part 2, pages 447–459. Am. Math. Soc., Providence, 1986. · Zbl 0589.34029
[40] M. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math., 39:51–68, 1986. · Zbl 0594.35005 · doi:10.1002/cpa.3160390103
[41] M. Weinstein. Existence and dynamic stability of solitary-wave solutions of equations arising in long wave propagation. Commun. Partial Differ. Eq., 12:1133–1173, 1987. · Zbl 0657.73040 · doi:10.1080/03605308708820522
[42] M. I. Weinstein. Asymptotic stability of nonlinear bound states in conservative dispersive systems. Contemp. Math., 200:223–235, 1996. · Zbl 0860.35118
[43] G. B. Whitham. Linear and Non-linear Waves. Wiley, New York, 1974. · Zbl 0373.76001
[44] R. Winther. A finite element method for a version of the Boussinesq equations. SIAM J. Numer. Anal., 19:561–570, 1982. · Zbl 0489.76027 · doi:10.1137/0719037
[45] N. J. Zabusky and M. D. Kruskal. Interaction of ”solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15:240–243, 1965. · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.