×

Mapping TASEP Back in time. (English) Zbl 1490.60281

Summary: We obtain a new relation between the distributions \(\mu_t\) at different times \(t\ge 0\) of the continuous-time totally asymmetric simple exclusion process (TASEP) started from the step initial configuration. Namely, we present a continuous-time Markov process with local interactions and particle-dependent rates which maps the TASEP distributions \(\mu_t\) backwards in time. Under the backwards process, particles jump to the left, and the dynamics can be viewed as a version of the discrete-space Hammersley process. Combined with the forward TASEP evolution, this leads to a stationary Markov dynamics preserving \(\mu_t\) which in turn brings new identities for expectations with respect to \(\mu_t\). The construction of the backwards dynamics is based on Markov maps interchanging parameters of Schur processes, and is motivated by bijectivizations of the Yang-Baxter equation. We also present a number of corollaries, extensions, and open questions arising from our constructions.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
05E05 Symmetric functions and generalizations
60J60 Diffusion processes
82C22 Interacting particle systems in time-dependent statistical mechanics
82B23 Exactly solvable models; Bethe ansatz

References:

[1] Aggarwal, A.; Borodin, A.; Bufetov, A., Stochasticization of solutions to the Yang-Baxter equation, Ann. Henri Poincare, 20, 8, 2495-2554 (2019) · Zbl 1439.81057
[2] Aldous, D.; Diaconis, P., Hammersley’s interacting particle process and longest increasing subsequences, Probab. Theory Relat. Fields, 103, 2, 199-213 (1995) · Zbl 0836.60107
[3] Andjel, E.; Guiol, H., Long-range exclusion processes, generator and invariant measures, Ann. Probab., 33, 6, 2314-2354 (2005) · Zbl 1099.60064
[4] Baik, J., Liu, Z.: Multipoint distribution of periodic TASEP. J. AMS (2019). arXiv:1710.03284 [math.PR] · Zbl 1484.60104
[5] Balazs, M.; Bowen, R., Product blocking measures and a particle system proof of the Jacobi triple product, Ann. Inst. Henri Poincaré B, 54, 1, 514-528 (2018) · Zbl 1396.60100
[6] Barraquand, G.; Corwin, I., The \(q\)-Hahn asymmetric exclusion process, Ann. Appl. Probab., 26, 4, 2304-2356 (2016) · Zbl 1352.60127
[7] Basu, R., Ganguly, S.: Time correlation exponents in last passage percolation (2018). arXiv preprint arXiv:1807.09260 [math.PR] · Zbl 1469.60305
[8] Basu, R., Ganguly, S., Hammond, A.: Fractal geometry of \(Airy_2\) processes coupled via the Airy sheet (2019). arXiv preprint arXiv:1904.01717 [math.PR] · Zbl 1457.82165
[9] Belitsky, V.; Schütz, G., Self-duality and shock dynamics in the \(n\)-component priority ASEP, Stoch. Process. Appl., 128, 4, 1165-1207 (2018) · Zbl 1391.60229
[10] Benassi, A.; Fouque, J-P, Hydrodynamical limit for the asymmetric simple exclusion process, Ann. Probab., 15, 2, 546-560 (1987) · Zbl 0623.60120
[11] Borodin, A., Schur dynamics of the Schur processes, Adv. Math., 228, 4, 2268-2291 (2011) · Zbl 1234.60012
[12] Borodin, A., On a family of symmetric rational functions, Adv. Math., 306, 973-1018 (2017) · Zbl 1355.05250
[13] Borodin, A.; Bufetov, A., An irreversible local Markov chain that preserves the six vertex model on a torus, Ann. Inst. Henri Poincaré B, 53, 1, 451-463 (2017) · Zbl 1361.60059
[14] Borodin, A.; Corwin, I., Macdonald processes, Probab. Theory Relat. Fields, 158, 225-400 (2014) · Zbl 1291.82077
[15] Borodin, A.; Ferrari, P., Large time asymptotics of growth models on space-like paths I: PushASEP, Electron. J. Probab., 13, 1380-1418 (2008) · Zbl 1187.82084
[16] Borodin, A.; Ferrari, P., Anisotropic growth of random surfaces in \(2+1\) dimensions, Commun. Math. Phys., 325, 603-684 (2014) · Zbl 1303.82015
[17] Borodin, A.; Gorin, V., Markov processes of infinitely many nonintersecting random walks, Probab. Theory Relat. Fields, 155, 3-4, 935-997 (2013) · Zbl 1278.60113
[18] Borodin, A., Gorin, V.: Lectures on integrable probability. In: Probability and Statistical Physics in St. Petersburg, vol. 91. Proceedings of Symposia in Pure Mathematics, pp. 155-214. AMS (2016). arXiv:1212.3351 [math.PR] · Zbl 1388.60157
[19] Borodin, A.; Gorin, V.; Rains, E., q-Distributions on boxed plane partitions, Sel. Math., 16, 4, 731-789 (2010) · Zbl 1205.82122
[20] Borodin, A.; Kuan, J., Asymptotics of Plancherel measures for the infinite-dimensional unitary group, Adv. Math., 219, 3, 894-931 (2008) · Zbl 1153.60058
[21] Borodin, A.; Olshanski, G., Infinite-dimensional diffusions as limits of random walks on partitions, Probab. Theory Relat. Fields, 144, 1, 281-318 (2009) · Zbl 1163.60036
[22] Borodin, A.; Olshanski, G., The boundary of the Gelfand-Tsetlin graph: a new approach, Adv. Math., 230, 1738-1779 (2012) · Zbl 1245.05131
[23] Borodin, A.; Olshanski, G., The Young bouquet and its boundary, Mosc. Math. J., 13, 2, 193-232 (2013) · Zbl 1320.05137
[24] Borodin, A.; Olshanski, G., Representations of the Infinite Symmetric Group (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1364.20001
[25] Borodin, A.; Petrov, L., Integrable probability: from representation theory to Macdonald processes, Probab. Surv., 11, 1-58 (2014) · Zbl 1295.82023
[26] Borodin, A.; Petrov, L., Nearest neighbor Markov dynamics on Macdonald processes, Adv. Math., 300, 71-155 (2016) · Zbl 1356.60161
[27] Borodin, A., Wheeler, M.: Spin \(q\)-Whittaker polynomials (2017). arXiv preprint arXiv:1701.06292 [math.CO] · Zbl 1460.81033
[28] Brankov, J.; Priezzhev, V.; Schadschneider, A.; Schreckenberg, M., The Kasteleyn model and a cellular automaton approach to traffic flow, J. Phys. A Math. Gen., 29, 10, L229-L235 (1996) · Zbl 0901.60097
[29] Bufetov, A., Mucciconi, M., Petrov, L.: Yang-Baxter random fields and stochastic vertex models. Adv. Math. (2019). arXiv preprint arXiv:1905.06815 [math.PR] · Zbl 1469.05162
[30] Bufetov, A.; Petrov, L., Yang-Baxter field for spin Hall-Littlewood symmetric functions, Forum Math. Sigma, 7, e39 (2019) · Zbl 1480.60285
[31] Chhita, S.; Ferrari, P.; Spohn, H., Limit distributions for KPZ growth models with spatially homogeneous random initial conditions, Ann. Appl. Probab., 28, 3, 1573-1603 (2018) · Zbl 1397.82040
[32] Cohn, H.; Kenyon, R.; Propp, J., A variational principle for domino tilings, J. AMS, 14, 2, 297-346 (2001) · Zbl 1037.82016
[33] Corwin, I., The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl., 1, 1130001 (2012) · Zbl 1247.82040
[34] Corwin, I.: The \(q\)-Hahn Boson process and \(q\)-Hahn TASEP. Int. Math. Res. Notices rnu094 (2014). arXiv:1401.3321 [math.PR] · Zbl 1335.82018
[35] Corwin, I.; Hammond, A., Brownian Gibbs property for Airy line ensembles, Invent. Math., 195, 2, 441-508 (2014) · Zbl 1459.82117
[36] Dauvergne, D., Ortmann, J., Virag, B.: The directed landscape (2018). arXiv preprint arXiv:1812.00309 [math.PR]
[37] Di Francesco, P.; Guitter, E., A tangent method derivation of the arctic curve for q-weighted paths with arbitrary starting points, J. Phys. A, 52, 11, 115205 (2019) · Zbl 1507.82014
[38] Dynkin, E., Sufficient statistics and extreme points, Ann. Probab., 6, 705-730 (1978) · Zbl 0403.62009
[39] Ferrari, P.: The universal \(Airy_1\) and \(Airy_2\) processes in the Totally Asymmetric Simple Exclusion Process. In: Baik, J., Kriecherbauer, T., Li, L.-C., McLaughlin, K.T.-R., Tomei, C. (eds.) Integrable Systems and Random Matrices: In Honor of Percy Deift. Contemporary Math., pp. 321-332. AMS (2008). arXiv:math-ph/0701021
[40] Ferrari, P.; Occelli, A., Time-time covariance for last passage percolation with generic initial profile, Math. Phys. Anal. Geom., 22, 22, 1 (2019) · Zbl 1405.60144
[41] Ferrari, P.; Spohn, H., On time correlations for KPZ growth in one dimension, SIGMA, 12, 74 (2016) · Zbl 1344.60095
[42] Ferrari, PA, Limit theorems for tagged particles, Markov Process. Relat. Fields, 2, 1, 17-40 (1996) · Zbl 0879.60109
[43] Ferrari, PA, TASEP hydrodynamics using microscopic characteristics, Probab. Surv., 15, 1-27 (2018) · Zbl 1434.60288
[44] Ferrari, P.A., Martin, J.: Multiclass processes, dual points and M/M/1 queues (2005). arXiv preprint arXiv:math-ph/0509045
[45] Fulton, W.: Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press. ISBN: 0521567246 (1997) · Zbl 0878.14034
[46] Gorin, V., The q-Gelfand-Tsetlin graph, Gibbs measures and q-Toeplitz matrices, Adv. Math., 229, 1, 201-266 (2012) · Zbl 1235.22028
[47] Gorin, V.; Olshanski, G., A quantization of the harmonic analysis on the infinite-dimensional unitary group, J. Funct. Anal., 270, 1, 375-418 (2016) · Zbl 1328.43007
[48] Guiol, H., Un résultat pour le processus d’exclusion à longue portée [A result for the long-range exclusion process], Ann. l’Institut Henri Poincare (B) Probab. Stat., 33, 4, 387-405 (1997) · Zbl 1002.60584
[49] Hammersley, J.M.: A few seedlings of research. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 345-394 (1972) · Zbl 0236.00018
[50] Johansson, K., Shape fluctuations and random matrices, Commun. Math. Phys., 209, 2, 437-476 (2000) · Zbl 0969.15008
[51] Johansson, K.: The two-time distribution in geometric last-passage percolation (2018). arXiv preprint arXiv:1802.00729 [math.PR] · Zbl 1423.60158
[52] Johansson, K.: The long and short time asymptotics of the two-time distribution in local random growth (2019). arXiv preprint arXiv:1904.08195 [math.PR]
[53] Johansson, K., Rahman, M.: Multi-time distribution in discrete polynuclear growth. Commun. Pure Appl. Math. (2020). arXiv:1906.01053 [math.PR] · Zbl 1530.60084
[54] Kenyon, R.; Okounkov, A., Limit shapes and the complex Burgers equation, Acta Math., 199, 2, 263-302 (2007) · Zbl 1156.14029
[55] Kerov, S.; Okounkov, A.; Olshanski, G., The boundary of Young graph with Jack edge multiplicities, Int. Math. Res. Notices, 4, 173-199 (1998) · Zbl 0960.05107
[56] Li, H., Petrov, L.: Computer simulation of the backwards TASEP evolution. https://lpetrov.cc/simulations/2019-06-26-back-tasep/ (2019)
[57] Liggett, T., Interacting Particle Systems (2005), Berlin: Springer, Berlin · Zbl 1103.82016
[58] Liggett, TM, Ergodic theorems for the asymmetric simple exclusion process, Trans. Am. Math. Soc., 213, 237-261 (1975) · Zbl 0322.60086
[59] MacDonald, C.; Gibbs, J., Concerning the kinetics of polypeptide synthesis on polyribosomes, Biopolymers, 7, 5, 707-725 (1969)
[60] MacDonald, C.; Gibbs, J.; Pipkin, A., Kinetics of biopolymerization on nucleic acid templates, Biopolymers, 6, 1, 1-25 (1968)
[61] Macdonald, IG, Symmetric Functions and Hall Polynomials (1995), Oxford: Oxford University Press, Oxford · Zbl 0824.05059
[62] Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point (2017). arXiv preprint arXiv:1701.00018 [math.PR] · Zbl 1505.82041
[63] Mkrtchyan, S.; Petrov, L., GUE corners limit of q-distributed lozenge tilings, Electron. J. Probab., 22, 101, 24 (2017) · Zbl 1386.60035 · doi:10.1214/17-EJP112
[64] O’Connell, N., A path-transformation for random walks and the Robinson-Schensted correspondence, Trans. AMS, 355, 9, 3669-3697 (2003) · Zbl 1031.05132
[65] O’Connell, N., Conditioned random walks and the RSK correspondence, J. Phys. A, 36, 12, 3049-3066 (2003) · Zbl 1035.05097
[66] Okounkov, A., Infinite wedge and random partitions, Sel. Math., 7, 1, 57-81 (2001) · Zbl 0986.05102
[67] Okounkov, A.; Reshetikhin, N., Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. AMS, 16, 3, 581-603 (2003) · Zbl 1009.05134
[68] Petrov, L., A two-parameter family of infinite-dimensional diffusions in the Kingman simplex, Funct. Anal. Appl., 43, 4, 279-296 (2009) · Zbl 1204.60076
[69] Petrov, L., The boundary of the Gelfand-Tsetlin graph: new proof of Borodin-Olshanski’s formula, and its q-analogue, Mosc. Math. J., 14, 1, 121-160 (2014) · Zbl 1297.05249
[70] Petrov, L., Zhang, E.: Computer simulations of dynamics on \(q\)-vol lozenge tilings inverting the parameter \(q\). https://lpetrov.cc/simulations/2019-04-30-qvol/ (2019)
[71] Povolotsky, A., On integrability of zero-range chipping models with factorized steady state, J. Phys. A, 46, 465205 (2013) · Zbl 1290.82022
[72] Quastel, J.; Spohn, H., The one-dimensional KPZ equation and its universality class, J. Stat. Phys., 160, 4, 965-984 (2015) · Zbl 1327.82069
[73] Rákos, A.; Schütz, G., Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process, J. Stat. Phys., 118, 3-4, 511-530 (2005) · Zbl 1126.82330
[74] Reshetikhin, N.: Lectures on the integrability of the 6-vertex model. In: Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing, pp. 197-266. Oxford Univ. Press (2010). arXiv:1010.5031 [math-ph] · Zbl 1202.82022
[75] Romik, D., The Surprising Mathematics of Longest Increasing Subsequences (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1345.05003
[76] Rost, H., Nonequilibrium behaviour of a many particle process: density profile and local equilibria, Z. Wahrsch. Verw. Gebiete, 58, 1, 41-53 (1981) · Zbl 0451.60097 · doi:10.1007/BF00536194
[77] Sasamoto, T.; Wadati, M., Exact results for one-dimensional totally asymmetric diffusion models, J. Phys. A, 31, 6057-6071 (1998) · Zbl 1085.83501
[78] Seppäläinen, T., Existence of hydrodynamics for the totally asymmetric simple K-exclusion process, Ann. Probab., 27, 1, 361-415 (1999) · Zbl 0947.60088
[79] Sheffield, S.: Random surfaces. Astérisque 304 (2005). arXiv:math/0304049 [math.PR] · Zbl 1104.60002
[80] Spitzer, F., Interaction of Markov processes, Adv. Math., 5, 2, 246-290 (1970) · Zbl 0312.60060
[81] Spohn, H.: KPZ scaling theory and the semi-discrete directed polymer model (2012). arXiv:1201.0645 [cond-mat.stat-mech]
[82] Takeyama, Y., A deformation of affine Hecke algebra and integrable stochastic particle system, J. Phys. A, 47, 46, 465203 (2014) · Zbl 1310.81083
[83] Toninelli, F., A \((2 + 1)\)-dimensional growth process with explicit stationary measures, Ann. Probab., 45, 5, 2899-2940 (2017) · Zbl 1383.82031
[84] Vershik, A.; Kerov, S., Asymptotic theory of the characters of the symmetric group, Funktsional. Anal. i Prilozhen., 15, 4, 15-27, 96 (1981) · Zbl 0507.20006
[85] Vershik, A.; Kerov, S., The characters of the infinite symmetric group and probability properties of the Robinson-Shensted-Knuth algorithm, SIAM J. Algebr. Discrete Math., 7, 1, 116-124 (1986) · Zbl 0584.05004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.