×

Time-time covariance for last passage percolation with generic initial profile. (English) Zbl 1405.60144

Summary: We consider time correlation for KPZ growth in \(1+1\) dimensions in a neighborhood of a characteristics. We prove convergence of the covariance with droplet, flat and stationary initial profile. In particular, this provides a rigorous proof of the exact formula of the covariance for the stationary case obtained in [P. L. Ferrari and H. Spohn, in: The Oxford handbook of random matrix theory. Oxford: Oxford University Press. 782–801 (2011; Zbl 1234.60010)]. Furthermore, we prove the universality of the first order correction when the two observation times are close and provide a rigorous bound of the error term. This result holds also for random initial profiles which are not necessarily stationary.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
82B43 Percolation

Citations:

Zbl 1234.60010

References:

[1] Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33, 1643-1697 (2006) · Zbl 1086.15022 · doi:10.1214/009117905000000233
[2] Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Comm. Pure Appl. Math. 63, 1017-1070 (2010) · Zbl 1194.82067
[3] Baik, J., Ferrari, P.L., Péché, S.: Convergence of the two-point function of the stationary TASEP, Singular Phenomena and Scaling in Mathematical Models, Springer, pp. 91-110 (2014) · Zbl 1355.82024
[4] Baik, J., Liu, Z.: Multi-point distribution of periodic TASEP. arXiv:1710.03284 (2017)
[5] Baik, J., Liu, Z.: TASEP on a ring in sub-relaxation time scale. Comm. Pure Appl. Math. 71, 747-813 (2018) · Zbl 1390.82040 · doi:10.1002/cpa.21702
[6] Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523-542 (2000) · Zbl 0976.82043 · doi:10.1023/A:1018615306992
[7] Balázs, M., Cator, E., Seppäläinen, T.: Cube root fluctuations for the corner growth model associated to the exclusion process. Electron J. Probab. 11, 1094-1132 (2006) · Zbl 1139.60046 · doi:10.1214/EJP.v11-366
[8] Basu, R., Ganguly, S.: Time correlation exponents in last passage percolation. arXiv:1807.09260 (2018) · Zbl 1469.60305
[9] Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of the Slow Bond Problem. arXiv:1408.346 (2014)
[10] Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron J. Probab. 13, 1380-1418 (2008) · Zbl 1187.82084 · doi:10.1214/EJP.v13-541
[11] Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055-1080 (2007) · Zbl 1136.82028 · doi:10.1007/s10955-007-9383-0
[12] Borodin, A., Ferrari, P.L., Sasamoto, T.: Transition between Airy1 and Airy2 processes and TASEP fluctuations. Comm. Pure Appl. Math. 61, 1603-1629 (2008) · Zbl 1214.82062 · doi:10.1002/cpa.20234
[13] Borodin, A., Gorin, V.: Lectures on integrable probability. arXiv:1212.3351 (2012) · Zbl 1388.60157
[14] Borodin, A., Péché, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275-290 (2008) · Zbl 1145.82021 · doi:10.1007/s10955-008-9553-8
[15] Cator, E., Pimentel, L.: On the local fluctuations of last-passage percolation models. Stoch. Proc. Appl. 125, 879-903 (2015) · Zbl 1326.60134 · doi:10.1016/j.spa.2014.08.009
[16] Chhita, S., Ferrari, P.L., Spohn, H.: Limit distributions for KPZ growth models with spatially homogeneous random initial conditions. Ann. Appl. Probab. 28, 1573-1603 (2018) · Zbl 1397.82040 · doi:10.1214/17-AAP1338
[17] Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices: Theory Appl. 01, 1130001 (2012) · Zbl 1247.82040 · doi:10.1142/S2010326311300014
[18] Corwin, I., Ferrari, P.L., Péché, S.: Limit processes for TASEP with shocks and rarefaction fans. J. Stat. Phys. 140, 232-267 (2010) · Zbl 1197.82078 · doi:10.1007/s10955-010-9995-7
[19] Corwin, I., Ferrari, P.L., Péché, S.: Universality of slow decorrelation in KPZ models. Ann. Inst. H. Poincaré, Probab. Statist. 48, 134-150 (2012) · Zbl 1247.82041 · doi:10.1214/11-AIHP440
[20] Corwin, I., Liu, Z., Wang, D.: Fluctuations of TASEP and LPP with general initial data. Ann. Appl. Probab. 26, 2030-2082 (2016) · Zbl 1356.82013 · doi:10.1214/15-AAP1139
[21] Ferrari, P.A., Fontes, L.: Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Relat. Fields 99, 305-319 (1994) · Zbl 0801.60094 · doi:10.1007/BF01199027
[22] Ferrari, P.L.: Slow decorrelations in KPZ growth. J. Stat. Mech., P07022 (2008) · Zbl 1459.82175
[23] Ferrari, P.L.: From interacting particle systems to random matrices. J. Stat. Mech., P10016 (2010) · Zbl 1456.82657
[24] Ferrari, P.L., Ghosal, P., Nejjar, P.: Limit law of a second class particle in TASEP with non-random initial condition. arXiv:1710.02323 (2017) · Zbl 1472.82023
[25] Ferrari, P.L., Nejjar, P.: Anomalous shock fluctuations in TASEP and last passage percolation models. Probab. Theory Relat. Fields 161, 61-109 (2015) · Zbl 1311.60116 · doi:10.1007/s00440-013-0544-6
[26] Ferrari, P.L., Nejjar, P.: Fluctuations of the competition interface in presence of shocks. ALEA Lat. Am. J. Probab. Math. Stat. 14, 299-325 (2017) · Zbl 1361.60090
[27] Ferrari, P.L., Occelli, A.: Universality of the GOE Tracy-Widom distribution for TASEP with arbitrary particle density. Electron J. Probab. 23(51), 1-14 (2018) · Zbl 1406.82012
[28] Ferrari, P.L., Spohn, H.: Random Growth Models, The Oxford handbook of random matrix theory. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) , pp. 782-801. Oxford Univ. Press, Oxford (2011) · Zbl 1234.60010
[29] Ferrari, P.L., Spohn, H.: On time correlations for KPZ growth in one dimension. SIGMA 12, 074 (2016) · Zbl 1344.60095
[30] Johansson, K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209, 437-476 (2000) · Zbl 0969.15008 · doi:10.1007/s002200050027
[31] Johansson, K.: Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242, 277-329 (2003) · Zbl 1031.60084 · doi:10.1007/s00220-003-0945-y
[32] Johansson, K.: Two time distribution in Brownian directed percolation. Comm. Math. Phys. 351, 441-492 (2017) · Zbl 1366.82025 · doi:10.1007/s00220-016-2660-5
[33] Johansson, K.: The two-time distribution in geometric last-passage percolation. arXiv:1802.00729 (2018) · Zbl 1423.60158
[34] Kardar, M., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889-892 (1986) · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[35] Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. arXiv:1701.00018 (2017) · Zbl 1505.82041
[36] De Nardis, J., Le Doussal, P.: Tail of the two-time height distribution for KPZ growth in one dimension, J. Stat. Mech 053212 (2017) · Zbl 1457.82286
[37] De Nardis, J., Le Doussal, P.: Two-time height distribution for 1D KPZ growth: the recent exact result and its tail via replica, J. Stat. Mech 093203 (2018) · Zbl 1457.82287
[38] De Nardis, J., Le Doussal, P., Takeuchi, K.A.: Memory and universality in interface growth. Phys. Rev. Lett. 118, 125701 (2017) · doi:10.1103/PhysRevLett.118.125701
[39] Nejjar, P.: Transition to shocks in TASEP and decoupling of last passage times. arXiv:1705.08836 (2017) · Zbl 1414.60081
[40] Pimentel, L.P.R.: Ergodicity of the KPZ fixed point. arXiv:1708.06006 (2017) · Zbl 1468.60122
[41] Pimentel, L.P.R.: Local behavior of airy processes. J. Stat. Phys. 173, 1614-1638 (2018) · Zbl 1405.82029 · doi:10.1007/s10955-018-2147-1
[42] Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process In and out of equilibrium. In: Sidoravicius, V. (ed.) . Progress in Probability, Birkhäuser (2002) · Zbl 1015.60093
[43] Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071-1106 (2002) · Zbl 1025.82010 · doi:10.1023/A:1019791415147
[44] Quastel, J.: Introduction to KPZ. Curr. Dev. Math., 125-194 (2011) · Zbl 1316.60019
[45] Quastel, J., Remenik, D.: Airy processes and variational problems, Topics in percolative and disordered systems. In: Ramírez, A., Ben Arous, G., Ferrari, P., Newman, C., Sidoravicius, V., Vares, M. (eds.) . Springer (2014) · Zbl 1329.82059
[46] Quastel, J., Spohn, H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160, 965-984 (2015) · Zbl 1327.82069 · doi:10.1007/s10955-015-1250-9
[47] Rost, H.: Non-equilibrium behavior of a many particle system: density profile and local equilibrium. Z. Wahrsch. Verw. Gebiete 58, 41-53 (1981) · Zbl 0451.60097 · doi:10.1007/BF00536194
[48] Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549-L556 (2005) · doi:10.1088/0305-4470/38/33/L01
[49] Takeuchi, K.A.: Statistics of circular interface fluctuations in an off-lattice Eden model. J. Stat. Mech., P05007 (2012)
[50] Takeuchi, K.A.: Crossover from growing to stationary interfaces in the Kardar-Parisi-Zhang class. Phys. Rev. Lett. 110, 210604 (2013) · doi:10.1103/PhysRevLett.110.210604
[51] Takeuchi, K.A.: An appetizer to modern developments on the Kardar-Parisi-Zhang universality class. Physica A 504, 77-105 (2016) · Zbl 1514.82024 · doi:10.1016/j.physa.2018.03.009
[52] Takeuchi, K.A.: Private communication (2018)
[53] Takeuchi, K.A., Akimoto, T.: Characteristic sign renewals of Kardar-Parisi-Zhang fluctuations. J. Stat. Phys. 164, 1167-1182 (2016) · Zbl 1358.82024 · doi:10.1007/s10955-016-1582-0
[54] Takeuchi, K.A., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853-890 (2012) · Zbl 1246.82109 · doi:10.1007/s10955-012-0503-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.