×

Universality of the GOE Tracy-Widom distribution for TASEP with arbitrary particle density. (English) Zbl 1406.82012

The authors study the totally asymmetric simple exclusion process in continuous time on \(\mathbb{Z}\). They show the Gaussian orthogonal ensamble Tracy-Widom universality of the one-point fluctuations of the associated height function.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60B20 Random matrices (probabilistic aspects)

References:

[1] J. Baik, G. Ben Arous, and S. Péché, Phase transition of the largest eigenvalue for non-null complex sample covariance matrices, Ann. Probab. 33 (2006), 1643–1697. · Zbl 1086.15022 · doi:10.1214/009117905000000233
[2] J. Baik, P.L. Ferrari, and S. Péché, Limit process of stationary TASEP near the characteristic line, Comm. Pure Appl. Math. 63 (2010), 1017–1070. · Zbl 1194.82067
[3] J. Baik, P.L. Ferrari, and S. Péché, Convergence of the two-point function of the stationary TASEP, Singular Phenomena and Scaling in Mathematical Models, Springer, 2014, pp. 91–110. · Zbl 1355.82024
[4] J. Baik, K. Liechty, and G. Schehr, On the joint distribution of the maximum and its position of the Airy\(_2\) process minus a parabola, J. Math. Phys. 53 (2012), 083303. · Zbl 1278.82070
[5] J. Baik and Z. Liu, On the average of the Airy process and its time reversal, Electron. Commun. Probab. 18 (2013), 1–10. · Zbl 1305.60101
[6] J. Baik and Z. Liu, TASEP on a ring in sub-relaxation time scale, J. Stat. Phys. 165 (2016), 1051–1085. · Zbl 1440.82007
[7] J. Baik and Z. Liu, Fluctuations of TASEP on a ring in relaxation time scale, Comm. Pure Appl. Math. 71 (2017), 747–813. · Zbl 1390.82040
[8] J. Baik and E.M. Rains, The asymptotics of monotone subsequences of involutions, Duke Math. J. 109 (2001), 205–281. · Zbl 1007.60003 · doi:10.1215/S0012-7094-01-10921-6
[9] J. Baik and E.M. Rains, Symmetrized random permutations, Random Matrix Models and Their Applications, vol. 40, Cambridge University Press, 2001, pp. 1–19. · Zbl 0989.60010
[10] M. Balázs, E. Cator, and T. Seppäläinen, Cube root fluctuations for the corner growth model associated to the exclusion process, Electron. J. Probab. 11 (2006), 1094–1132. · Zbl 1139.60046
[11] A. Borodin and P.L. Ferrari, Large time asymptotics of growth models on space-like paths I: PushASEP, Electron. J. Probab. 13 (2008), 1380–1418. · Zbl 1187.82084 · doi:10.1214/EJP.v13-541
[12] A. Borodin, P.L. Ferrari, and M. Prähofer, Fluctuations in the discrete TASEP with periodic initial configurations and the Airy\(_1\) process, Int. Math. Res. Papers 2007 (2007), rpm002. · Zbl 1136.82321
[13] A. Borodin, P.L. Ferrari, M. Prähofer, and T. Sasamoto, Fluctuation properties of the TASEP with periodic initial configuration, J. Stat. Phys. 129 (2007), 1055–1080. · Zbl 1136.82028
[14] A. Borodin and S. Péché, Airy Kernel with Two Sets of Parameters in Directed Percolation and Random Matrix Theory, J. Stat. Phys. 132 (2008), 275–290. · Zbl 1145.82021
[15] P.J. Burke, The output of a queuing system, Operations Res. 4 (1956), 699–704. · Zbl 1414.90097 · doi:10.1287/opre.4.6.699
[16] E. Cator and L. Pimentel, On the local fluctuations of last-passage percolation models, Stoch. Proc. Appl. 125 (2015), 879–903. · Zbl 1326.60134
[17] S. Chhita, P.L. Ferrari, and H. Spohn, Limit distributions for KPZ growth models with spatially homogeneous random initial conditions, arXiv:1611.06690; To appear in Ann. Appl. Probab. (2016).
[18] I. Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices: Theory Appl. 01 (2012), 1130001. · Zbl 1247.82040 · doi:10.1142/S2010326311300014
[19] I. Corwin, P.L. Ferrari, and S. Péché, Limit processes for TASEP with shocks and rarefaction fans, J. Stat. Phys. 140 (2010), 232–267. · Zbl 1197.82078
[20] I. Corwin, P.L. Ferrari, and S. Péché,Universality of slow decorrelation in KPZ models, Ann. Inst. H. Poincaré Probab. Statist. 48 (2012), 134–150. · Zbl 1247.82041
[21] I. Corwin and A. Hammond, Brownian Gibbs property for Airy line ensembles, Inventiones mathematicae 195 (2013), 441–508. · Zbl 1459.82117 · doi:10.1007/s00222-013-0462-3
[22] I. Corwin, Z. Liu, and D. Wang, Fluctuations of TASEP and LPP with general initial data, Ann. Appl. Probab. 26 (2016), 2030–2082. · Zbl 1356.82013 · doi:10.1214/15-AAP1139
[23] P.L. Ferrari, The universal Airy\(_1\) and Airy\(_2\) processes in the Totally Asymmetric Simple Exclusion Process, Integrable Systems and Random Matrices: In Honor of Percy Deift (J. Baik, T. Kriecherbauer, L-C. Li, K. McLaughlin, and C. Tomei, eds.), Contemporary Math., Amer. Math. Soc., 2008, pp. 321–332. · Zbl 1145.82332
[24] P.L. Ferrari, Finite GUE distribution with cut-off at a shock, J. Stat. Phys. (2018), online first. · Zbl 1401.82023 · doi:10.1007/s10955-018-2022-0
[25] P.L. Ferrari and P. Nejjar, Anomalous shock fluctuations in TASEP and last passage percolation models, Probab. Theory Relat. Fields 161 (2015), 61–109. · Zbl 1311.60116 · doi:10.1007/s00440-013-0544-6
[26] P.L. Ferrari and H. Spohn, A determinantal formula for the GOE Tracy-Widom distribution, J. Phys. A 38 (2005), L557–L561.
[27] P.L. Ferrari, H. Spohn, and T. Weiss, Scaling limit for Brownian motions with one-sided collisions, Ann. Appl. Probab. 25 (2015), 1349–1382. · Zbl 1315.60108
[28] T. Imamura and T. Sasamoto, Dynamical properties of a tagged particle in the totally asymmetric simple exclusion process with the step-type initial condition, J. Stat. Phys. 128 (2007), 799–846. · Zbl 1136.82029
[29] K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), 437–476. · Zbl 0969.15008
[30] K. Johansson, Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), 277–329. · Zbl 1031.60084 · doi:10.1007/s00220-003-0945-y
[31] K. Johansson, The arctic circle boundary and the Airy process, Ann. Probab. 33 (2005), 1–30. · Zbl 1096.60039 · doi:10.1214/009117904000000937
[32] T.M. Liggett, Stochastic interacting systems: contact, voter and exclusion processes, Springer Verlag, Berlin, 1999. · Zbl 0949.60006
[33] K. Matetski, J. Quastel, and D. Remenik, The KPZ fixed point, preprint: arXiv:1701.00018 (2017).
[34] J. Ortmann, J. Quastel, and D. Remenik, A Pfaffian representation for flat ASEP, Comm. Pure Appl. Math. 70 (2016), 3–89. · Zbl 1366.82024
[35] J. Ortmann, J. Quastel, and D. Remenik, Exact formulas for random growth with half-flat initial data, Ann. Appl. Probab. 26 (2016), 507–548. · Zbl 1334.60212
[36] L.P.R. Pimentel, Local Behavior of Airy Processes, arXiv:1704.01903 (2017).
[37] M. Prähofer and H. Spohn, Universal distributions for growth processes in 1+1 dimensions and random matrices, Phys. Rev. Lett. 84 (2000), 4882–4885.
[38] M. Prähofer and H. Spohn, Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys. 108 (2002), 1071–1106. · Zbl 1025.82010
[39] J. Quastel and D. Remenik, Airy processes and variational problems, Topics in Percolative and Disordered Systems (A. Ramírez, G. Ben Arous, P.A. Ferrari, C. Newman, V. Sidoravicius, and M. Vares, eds.), Springer Proceedings in Mathematics & Statistics, vol. 69, Springer, New York, 2014. · Zbl 1329.82059
[40] J. Quastel and D. Remenik, Tails of the endpoint distribution of directed polymers, Ann. Inst. H. Poincaré Probab. Statist. 51 (2015), 1–17. · Zbl 1314.60159
[41] J. Quastel and D. Remenik, How flat is flat in a random interface growth?, arXiv:1606.09228; To appear in Trans. Am. Math. Soc. (2016).
[42] M. Reed and B. Simon, Methods of modern mathematical physics I: Functional analysis, Academic Press, New York, 1978. · Zbl 0401.47001
[43] H. Rost, Non-equilibrium behavior of a many particle system: density profile and local equilibrium, Z. Wahrsch. Verw. Gebiete 58 (1981), 41–53. · Zbl 0451.60097
[44] T. Sasamoto, Spatial correlations of the 1D KPZ surface on a flat substrate, J. Phys. A 38 (2005), L549–L556.
[45] B. Simon, Trace ideals and their applications, second edition ed., American Mathematical Society, 2000.
[46] C.A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151–174. · Zbl 0789.35152
[47] C.A. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Comm. Math. Phys. 177 (1996), 727–754. · Zbl 0851.60101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.