×

On the fractional NLS equation and the effects of the potential Well’s topology. (English) Zbl 1487.35010

Summary: In this paper we consider the fractional nonlinear Schrödinger equation \[ \varepsilon^{2s}(-\Delta)^s v+V(x)v=f(v),\quad x\in\mathbb{R}^N, \] where \(s\in (0,1), N\geq 2, f\) is a nonlinearity satisfying Berestycki-Lions type conditions and \(V\in C(\mathbb{R}^N,\mathbb{R})\) is a positive potential. For \(\varepsilon >0\) small, we prove the existence of at least \(\mathrm{cupl}(K)+1\) positive solutions, where \(K\) is a set of local minima in a bounded potential well and \(\mathrm{cupl}(K)\) denotes the cup-length of \(K\). By means of a variational approach, we analyze the topological difference between two levels of an indefinite functional in a neighborhood of expected solutions. Since the nonlocality comes in the decomposition of the space directly, we introduce a new fractional center of mass, via a suitable seminorm. Some other delicate aspects arise strictly related to the presence of the nonlocal operator. By using regularity results based on fractional De Giorgi classes, we show that the found solutions decay polynomially and concentrate around some point of \(K\) for \(\varepsilon\) small.

MSC:

35A15 Variational methods applied to PDEs
35B25 Singular perturbations in context of PDEs
35J20 Variational methods for second-order elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
35R11 Fractional partial differential equations
47J30 Variational methods involving nonlinear operators
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

References:

[1] C. O. Alves and V. Ambrosio,A multiplicity result for a nonlinear fractional Schrödinger equation in \mathbb{R}^N without the Ambrosetti-Rabinowitz condition,J. Math. Anal. Appl. 466 (2018), no. 1, 498-522. · Zbl 1393.35264
[2] C. O. Alves and O. H. Miyagaki,Existence and concentration of solution for a class of fractional elliptic equation in \mathbb{R}^N via penalization method,Calc. Var. Partial Differential Equations 55 (2016), no. 3, Article ID 47. · Zbl 1366.35212
[3] A. Ambrosetti, M. Badiale and S. Cingolani,Semiclassical states of nonlinear Schrödinger equations,Arch. Ration. Mech. Anal. 140 (1997), no. 3, 285-300. · Zbl 0896.35042
[4] A. Ambrosetti, A. Malchiodi and S. Secchi,Multiplicity results for some nonlinear Schrödinger equations with potentials,Arch. Ration. Mech. Anal. 159 (2001), no. 3, 253-271. · Zbl 1040.35107
[5] V. Ambrosio,Concentrating solutions for a class of nonlinear fractional Schrödinger equations in \mathbb{R}^N,Rev. Mat. Iberoam. 35 (2019), no. 5, 1367-1414. · Zbl 1430.35013
[6] A. Bahri and J.-M. Coron,On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain,Comm. Pure Appl. Math. 41 (1988), no. 3, 253-294. · Zbl 0649.35033
[7] T. Bartsch,Topological Methods for Variational Problems with Symmetries,Lecture Notes in Math. 1560,Springer, Berlin, 1993. · Zbl 0789.58001
[8] T. Bartsch,Note on category and cup-length,private communication 2012.
[9] T. Bartsch and T. Weth,The effect of the domain’s configuration space on the number of nodal solutions of singularly perturbed elliptic equations,Topol. Methods Nonlinear Anal. 26 (2005), no. 1, 109-133. · Zbl 1152.35039
[10] V. Benci and G. Cerami,Existence of positive solutions of the equation -\Delta u+a(x)u=u^{(N+2)/(N-2)} in \(\mathbf{R}}^{N\),J. Funct. Anal. 88 (1990), no. 1, 90-117. · Zbl 0705.35042
[11] V. Benci and G. Cerami,The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems,Arch. Ration. Mech. Anal. 114 (1991), no. 1, 79-93. · Zbl 0727.35055
[12] H. Berestycki and P.-L. Lions,Nonlinear scalar field equations. I. Existence of a ground state,Arch. Ration. Mech. Anal. 82 (1983), no. 4, 313-345. · Zbl 0533.35029
[13] U. Biccari, M. Warma and E. Zuazua,Local elliptic regularity for the Dirichlet fractional Laplacian,Adv. Nonlinear Stud. 17 (2017), no. 2, 387-409. · Zbl 1360.35033
[14] J. Byeon and L. Jeanjean,Standing waves for nonlinear Schrödinger equations with a general nonlinearity,Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185-200. · Zbl 1132.35078
[15] J. Byeon and L. Jeanjean,Erratum: “Standing waves for nonlinear Schrödinger equations with a general nonlinearity”[Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185-200; mr2317788],Arch. Ration. Mech. Anal. 190 (2008), no. 3, 549-551. · Zbl 1173.35636
[16] J. Byeon, O. Kwon and J. Seok,Nonlinear scalar field equations involving the fractional Laplacian,Nonlinearity 30 (2017), no. 4, 1659-1681. · Zbl 1372.35101
[17] J. Byeon and K. Tanaka,Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential,J. Eur. Math. Soc. (JEMS) 15 (2013), no. 5, 1859-1899. · Zbl 1294.35131
[18] J. Byeon and K. Tanaka,Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations,Mem. Amer. Math. Soc. 229 (2014), no. 1076, 1-89. · Zbl 1303.35094
[19] K.-C. Chang,Infinite-Dimensional Morse Theory and Multiple Solution Problems,Progr. Nonlinear Differential Equations Appl. 6,Birkhäuser, Boston, 1993. · Zbl 0779.58005
[20] G. Chen,Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations,Nonlinearity 28 (2015), no. 4, 927-949. · Zbl 1325.35257
[21] S. Cingolani, L. Jeanjean and K. Tanaka,Multiplicity of positive solutions of nonlinear Schrödinger equations concentrating at a potential well,Calc. Var. Partial Differential Equations 53 (2015), no. 1-2, 413-439. · Zbl 1326.35333
[22] S. Cingolani and M. Lazzo,Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations,Topol. Methods Nonlinear Anal. 10 (1997), no. 1, 1-13. · Zbl 0903.35018
[23] S. Cingolani, S. Secchi and M. Squassina,Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities,Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 5, 973-1009. · Zbl 1215.35146
[24] S. Cingolani and K. Tanaka,Semi-classical states for the nonlinear Choquard equations: Existence, multiplicity and concentration at a potential well,Rev. Mat. Iberoam. 35 (2019), no. 6, 1885-1924. · Zbl 1431.35169
[25] M. Cozzi,Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes,J. Funct. Anal. 272 (2017), no. 11, 4762-4837. · Zbl 1366.49040
[26] J. Dávila, M. del Pino and J. Wei,Concentrating standing waves for the fractional nonlinear Schrödinger equation,J. Differential Equations 256 (2014), no. 2, 858-892. · Zbl 1322.35162
[27] M. del Pino and P. L. Felmer,Local mountain passes for semilinear elliptic problems in unbounded domains,Calc. Var. Partial Differential Equations 4 (1996), no. 2, 121-137. · Zbl 0844.35032
[28] M. del Pino and P. L. Felmer,Semi-classical states for nonlinear Schrödinger equations,J. Funct. Anal. 149 (1997), no. 1, 245-265. · Zbl 0887.35058
[29] A. Di Castro, T. Kuusi and G. Palatucci,Nonlocal Harnack inequalities,J. Funct. Anal. 267 (2014), no. 6, 1807-1836. · Zbl 1302.35082
[30] A. Di Castro, T. Kuusi and G. Palatucci,Local behavior of fractional p-minimizers,Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 5, 1279-1299. · Zbl 1355.35192
[31] E. Di Nezza, G. Palatucci and E. Valdinoci,Hitchhiker’s guide to the fractional Sobolev spaces,Bull. Sci. Math. 136 (2012), no. 5, 521-573. · Zbl 1252.46023
[32] M. M. Fall, F. Mahmoudi and E. Valdinoci,Ground states and concentration phenomena for the fractional Schrödinger equation,Nonlinearity 28 (2015), no. 6, 1937-1961. · Zbl 1320.35320
[33] P. Felmer, A. Quaas and J. Tan,Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian,Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237-1262. · Zbl 1290.35308
[34] G. M. Figueiredo and G. Siciliano,A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in \mathbb{R}^N,NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Article ID 12. · Zbl 1375.35599
[35] A. Floer and A. Weinstein,Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,J. Funct. Anal. 69 (1986), no. 3, 397-408. · Zbl 0613.35076
[36] G. Fournier, D. Lupo, M. Ramos and M. Willem,Limit relative category and critical point theory,Dynamics Reported. Expositions in Dynamical Systems,Springer, Berlin (1994), 1-24. · Zbl 0794.58007
[37] R. L. Frank, E. Lenzmann and L. Silvestre,Uniqueness of radial solutions for the fractional Laplacian,Comm. Pure Appl. Math. 69 (2016), no. 9, 1671-1726. · Zbl 1365.35206
[38] S. Jarohs,Strong comparison principle for the fractional p-Laplacian and applications to starshaped rings,Adv. Nonlinear Stud. 18 (2018), no. 4, 691-704. · Zbl 1403.35064
[39] N. Laskin,Fractional quantum mechanics and Lévy path integrals,Phys. Lett. A 268 (2000), no. 4-6, 298-305. · Zbl 0948.81595
[40] N. Laskin,Fractional Schrödinger equation,Phys. Rev. E (3) 66 (2002), no. 5, Article ID 056108.
[41] W. S. Massey,A Basic Course in Algebraic Topology,Grad. Texts in Math. 127,Springer, New York, 1991. · Zbl 0725.55001
[42] Y.-G. Oh,Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)_a,Comm. Partial Differential Equations 13 (1988), no. 12, 1499-1519. · Zbl 0702.35228
[43] P. H. Rabinowitz,On a class of nonlinear Schrödinger equations,Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291. · Zbl 0763.35087
[44] S. Secchi,Ground state solutions for nonlinear fractional Schrödinger equations in \mathbb{R}^N,J. Math. Phys. 54 (2013), no. 3, Article ID 031501. · Zbl 1281.81034
[45] S. Secchi and M. Squassina,Soliton dynamics for fractional Schrödinger equations,Appl. Anal. 93 (2014), no. 8, 1702-1729. · Zbl 1298.35166
[46] J. Seok,Spike-layer solutions to nonlinear fractional Schrödinger equations with almost optimal nonlinearities,Electron. J. Differential Equations 2015 (2015), Article No. 196. · Zbl 1422.35173
[47] R. Servadei and E. Valdinoci,Weak and viscosity solutions of the fractional Laplace equation,Publ. Mat. 58 (2014), no. 1, 133-154. · Zbl 1292.35315
[48] A. Szulkin,A relative category and applications to critical point theory for strongly indefinite functionals,Nonlinear Anal. 15 (1990), no. 8, 725-739. · Zbl 0719.58011
[49] X. Wang,On concentration of positive bound states of nonlinear Schrödinger equations,Comm. Math. Phys. 153 (1993), no. 2, 229-244. · Zbl 0795.35118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.