×

Ground state solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R}^N\). (English) Zbl 1281.81034

Summary: We construct solutions to a class of Schrödinger equations involving the fractional Laplacian. Our approach is variational in nature, and based on minimization on the Nehari manifold.{
©2013 American Institute of Physics}

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35R11 Fractional partial differential equations
49S05 Variational principles of physics

References:

[1] DOI: 10.1103/PhysRevE.66.056108 · doi:10.1103/PhysRevE.66.056108
[2] DOI: 10.1016/S0375-9601(00)00201-2 · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[3] DOI: 10.1007/BF00946631 · Zbl 0763.35087 · doi:10.1007/BF00946631
[4] DOI: 10.1063/1.3701574 · Zbl 1275.81030 · doi:10.1063/1.3701574
[5] Dipierro S., Matematiche 68 pp 1– (2013)
[6] DOI: 10.1016/j.bulsci.2011.12.004 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[7] DOI: 10.1090/S0002-9939-02-06723-0 · Zbl 1022.35096 · doi:10.1090/S0002-9939-02-06723-0
[8] L. Silvestre, ”Regularity of the obstacle problem for a fractional power of the Laplace operator,” Ph.D. dissertation (University of Texas at Austin, 2005).
[9] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences Vol. 74 (Springer-Verlag, New York, 1989), pp. xiv+277. · Zbl 0676.58017
[10] DOI: 10.1512/iumj.2009.58.3576 · Zbl 1170.35038 · doi:10.1512/iumj.2009.58.3576
[11] DOI: 10.3934/cpaa.2010.9.741 · Zbl 1190.35077 · doi:10.3934/cpaa.2010.9.741
[12] DOI: 10.1007/s00526-005-0355-4 · Zbl 1206.35110 · doi:10.1007/s00526-005-0355-4
[13] DOI: 10.1016/j.jde.2012.02.023 · Zbl 1245.35034 · doi:10.1016/j.jde.2012.02.023
[14] Li Y., Adv. Differ. Equ. 2 pp 955– (1997)
[15] DOI: 10.1007/s002050050067 · Zbl 0896.35042 · doi:10.1007/s002050050067
[16] DOI: 10.1007/s002050100152 · Zbl 1040.35107 · doi:10.1007/s002050100152
[17] DOI: 10.4171/RLM/587 · Zbl 1219.35292 · doi:10.4171/RLM/587
[18] DOI: 10.2140/apde.2009.2.1 · Zbl 1183.35266 · doi:10.2140/apde.2009.2.1
[19] A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on Rn, Progress in Mathematics Vol. 240 (Birkhäuser Verlag, Basel, 2006), pp. xii+183. · Zbl 1115.35004
[20] DOI: 10.1080/03605300600987306 · Zbl 1143.26002 · doi:10.1080/03605300600987306
[21] DOI: 10.1007/BF02506001 · Zbl 0957.37019 · doi:10.1007/BF02506001
[22] DOI: 10.1017/S0308210509000584 · Zbl 1215.35146 · doi:10.1017/S0308210509000584
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.