×

Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well. (English) Zbl 1431.35169

Summary: We study existence and multiplicity of semi-classical states for the nonlinear Choquard equation \[-\varepsilon^2\Delta v+V(x) v = \frac{1}{\varepsilon^\alpha}\,(I_\alpha*F(v))f(v) \quad \text{in } \mathbb{R}^N,\] where \(N\geq 3, \alpha\in (0,N), I_\alpha(x)={A_\alpha/ |x|^{N-\alpha}}\) is the Riesz potential, \(F\in C^1(\mathbb{R},\mathbb{R}), F'(s) = f(s)\) and \(\varepsilon>0\) is a small parameter.
We develop a new variational approach and we show the existence of a family of solutions concentrating, as \(\varepsilon\to 0\), to a local minima of \(V(x)\) under general conditions on \(F(s)\). Our result is new also for \(f(s)=|s|^{p-2}s\) and applicable for \(p\in (\frac{N+\alpha}{N}, \frac{N+\alpha}{N-2})\). Especially, we can give the existence result for locally sublinear case \(p\in (\frac{N+\alpha}{N},2)\), which gives a positive answer to an open problem arisen in recent works of Moroz and Van Schaftingen.
We also study the multiplicity of positive single-peak solutions and we show the existence of at least \(\mathrm{cupl}(K)+1\) solutions concentrating around \(K\) as \(\varepsilon\to 0\), where \(K\subset \Omega\) is the set of minima of \(V(x)\) in a bounded potential well \(\Omega \), that is, \(m_0 \equiv \inf_{x\in \Omega} V(x) < \inf_{x\in \partial\Omega}V(x)\) and \(K=\{x\in\Omega; \, V(x)=m_0\}\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q40 PDEs in connection with quantum mechanics
35J20 Variational methods for second-order elliptic equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
35B09 Positive solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs

References:

[1] Ambrosetti, A., Badiale, M. and Cingolani, S.: Semiclassical states of nonlinear Schr¨odinger equations. Arch. Rational Mech. Anal.140 (1997), no. 3, 285-300. · Zbl 0896.35042
[2] Ambrosetti, A. and Rabinowitz, P. H.: Dual variational methods in critical point theory and applications. J. Functional Analysis14 (1973), 349-381. · Zbl 0273.49063
[3] Berestycki, H. and Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal.82 (1983), no. 4, 313-345. · Zbl 0533.35029
[4] Bahri, A. and Coron, J. M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm. Pure Appl. Math.41 (1988), no. 3, 253-294. · Zbl 0649.35033
[5] Bartsch, T. and Weth, T.: The effect of the domain’s configuration space on the number of nodal solutions of singularly perturbed elliptic equations. Topol. Methods Nonlinear Anal.63 (2005), no. 1, 109-133. · Zbl 1152.35039
[6] Benci, V. and Cerami, G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Rational Mech. Anal.114 (1991), no. 1, 79-93. · Zbl 0727.35055
[7] Benci, V. and Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differential Equations2 (1994), no. 1, 29-48. · Zbl 0822.35046
[8] Benci, V., Cerami, G. and Passaseo, D.: On the number of the positive solutions of some nonlinear elliptic problems. In Nonlinear analysis, 93-107. Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991. · Zbl 0838.35040
[9] Byeon, J. and Jeanjean, L.: Standing waves for nonlinear Schr¨odinger equations with a general nonlinearity. Arch. Rational Mech. Anal.185 (2007), no. 2, 185-200. · Zbl 1132.35078
[10] Byeon, J. and Tanaka, K.: Semi-classical standing waves for nonlinear Schr¨odinger equations at structurally stable critical points of the potential. J. Eur. Math. Soc. (JEMS)15 (2013), no. 5, 1859-1899. · Zbl 1294.35131
[11] Byeon, J. and Tanaka, K.: Semiclassical standing waves with clustering peaks for nonlinear Schr¨odinger equations. Mem. Amer. Math. Soc.229 (2014), no. 1076, viii+89 pp. · Zbl 1303.35094
[12] Byeon, J. and Tanaka, K.: Multi-bump positive solutions for a nonlinear elliptic problem in expanding tubular domains. Calc. Var. Partial Differential Equations50 (2014), no. 1-2, 365-397. · Zbl 1295.35223
[13] Cingolani, S., Clapp, M. and Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys.63 (2012), no. 2, 233-248. · Zbl 1247.35141
[14] Cingolani, S., Clapp, M. and Secchi, S.: Intertwining semiclassical solutions to a Schr¨odinger-Newton system. Discrete Contin. Dyn. Syst. Ser. S6 (2013), no. 4, 891-908. · Zbl 1260.35198
[15] Cingolani, S., Jeanjean, L. and Tanaka, K.: Multiplicity of positive solutions of nonlinear Schr¨odinger equations concentrating at a potential well. Calc. Var. Partial Differential Equations53 (2015), no. 1-2, 413-439. · Zbl 1326.35333
[16] Cingolani, S., Jeanjean, L. and Tanaka, K.: Multiple complex-valued solutions for nonlinear magnetic Schr¨odinger equations. J. Fixed Point Theory Appl.19 (2017), no. 1, 37-66. · Zbl 1360.35239
[17] Cingolani, S. and Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schr¨odinger equations. Topol. Methods Nonlinear Anal.10 (1997), no. 1, 1-13. · Zbl 0903.35018
[18] Cingolani, S. and Lazzo, M.: Multiple positive solutions to nonlinear Schr¨odinger equations with competing potential functions. J. Differential Equations160 (2000), no. 1, 118-138. · Zbl 0952.35043
[19] Cingolani, S., Secchi, S. and Squassina, M.: Semi-classical limit for Schr¨odinger equations with magnetic field and Hartree-type nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A140 (2010), no. 5, 973-1009. · Zbl 1215.35146
[20] Clapp, M. and Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl.407 (2013), no. 1, 1-15. · Zbl 1310.35114
[21] del Pino, M. and Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differential Equations4 (1996), no. 2, 121-137. · Zbl 0844.35032
[22] Floer, A. and Weinstein, A.: Nonspreading wave packets for the cubic Schr¨odinger equation with a bounded potential. J. Funct. Anal.69 (1986), no. 3, 397-408. · Zbl 0613.35076
[23] Fournier, G. and Willem, M.: Multiple solutions of the forced double pendulum equation. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire6 (1989), suppl., 259-281. · Zbl 0683.70022
[24] Fournier, G. and Willem, M.: Relative category and the calculus of variations. In Variational methods (Paris, 1988), 95-104. Progr. Nonlinear Differential Equations Appl. 4, Birkh¨auser Boston, Boston, MA, 1990. · Zbl 0719.58010
[25] Fr¨ohlich, J. and Lenzmann, E.:Mean-field limit of quantum Bose gases and nonlinear Hartree equation. In S´eminaire: ´Equations aux D´eriv´ees Partielles, 2003-2004, Exp. No. XIX, 26 pp. S´emin. ´Equ. D´eriv. Partielles, ´Ecole Polytech., Palaiseau, 2004. · Zbl 1292.81040
[26] Fr¨ohlich, J., Tsai, T.-P. and Yau, H.-T.:On the point-particle (Newtonian) limit of the non-linear Hartree equation. Comm. Math. Phys.225 (2002), no. 2, 223-274. · Zbl 1025.81015
[27] Hirata, J., Ikoma, N. and Tanaka, K.: Nonlinear scalar field equations inRN: mountain pass and symmetric mountain pass approaches. Topol. Methods Nonlinear Anal.35 (2010), no. 2, 253-276. · Zbl 1203.35106
[28] Jeanjean, L. and Tanaka, K.: A remark on least energy solutions inRN. Proc. Amer. Math. Soc.131 (2003), no. 8, 2399-2408. · Zbl 1094.35049
[29] Lenzmann, E.: Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE2 (2009), no. 1, 1-27. · Zbl 1183.35266
[30] Lieb, E. H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Studies in Appl. Math.57 (1976/77), no. 2, 93-105. · Zbl 0369.35022
[31] Lieb, E. H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. (2)118 (1983), no. 2, 349-374. · Zbl 0527.42011
[32] Lieb, E. H. and Loss, M.: Analysis. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 1997. · Zbl 0905.11023
[33] Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal.4 (1980), no. 6, 1063-1072. · Zbl 0453.47042
[34] Ma, L. and Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Rational Mech. Anal.195 (2010), no. 2, 455-467. · Zbl 1185.35260
[35] Moroz, I. M., Penrose, R. and Tod, P.: Spherically-symmetric solutions of the Schr¨odinger-Newton equations. Topology of the Universe Conference (Cleveland, OH, 1997), Classical Quantum Gravity15 (1998), no. 9, 2733-2742. · Zbl 0936.83037
[36] Moroz, V. and van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal.265 (2013), no. 2, 153-184. · Zbl 1285.35048
[37] Moroz, V. and van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc.367 (2015), no. 9, 6557-6579. · Zbl 1325.35052
[38] Moroz, V. and van Schaftingen, J.: Semi-classical states for the Choquard equations. Calc. Var. Partial Differential Equations52 (2015), no. 1-2, 199-235. · Zbl 1309.35029
[39] Moroz, V. and van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl.19 (2017), no. 1, 773-813. · Zbl 1360.35252
[40] Oh, Y.-G.: Existence of semiclassical bound states of nonlinear Schr¨odinger equations with potentials of the class (V )a. Comm. Partial Differential Equations13 (1988), no. 12, 1499-1519. · Zbl 0702.35228
[41] Pekar, S.: Untersuchung ¨uber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin, 1954. · Zbl 0058.45503
[42] Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativity Gravitation28 (1996), no. 5, 581-600. · Zbl 0855.53046
[43] Penrose, R.: Quantum computation, entanglement and state reduction. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.356 (1998), no. 1743, 1927-1939. · Zbl 1152.81659
[44] Penrose, R.: The road to reality. A complete guide to the laws of the Universe. Alfred A. Knopf, New York, 2005. · Zbl 1188.00007
[45] Secchi, S.: A note on Schr¨odinger-Newton systems with decaying electric potential. Nonlinear Analysis72 (2010), no. 9-10, 3842-3856. · Zbl 1187.35254
[46] Spanier, E. H.: Algebraic topology. Corrected reprint. Springer-Verlag, New YorkBerlin, 1981.
[47] Yang, M., Zhang, J. and Zhang, Y.: Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. Comm. Pure Appl. Anal.16 (2017), no. 2, 493-512. · Zbl 1364.35027
[48] Wei, J. and Winter, M.: Strongly interacting bumps for the Schr¨odinger-Newton equations. J. Math. Phys.50 (2009), no. 1, 012905, 22 · Zbl 1189.81061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.