×

Multiple complex-valued solutions for nonlinear magnetic Schrödinger equations. (English) Zbl 1360.35239

Summary: We study, in the semiclassical limit, the singularly perturbed nonlinear Schrödinger equations \[ L^{\hslash }_{A,V} u = f(|u|^2)u \quad\text{in } \mathbb {R}^N\eqno{(0.1)} \] where \(N \geq 3\), \(L^{\hslash}_{A,V}\) is the Schrödinger operator with a magnetic field having source in a \(C^1\) vector potential \(A\) and a scalar continuous (electric) potential \(V\) defined by \[ L^{\hslash }_{A,V}= -\hslash ^2 \Delta -\frac{2\hslash }{i} A \cdot \nabla + |A|^2- \frac{\hslash }{i}\mathrm{div}A + V(x).\eqno{(0.2)} \] Here, \(f\) is a nonlinear term which satisfies the so-called Berestycki-Lions conditions. We assume that there exists a bounded domain \(\Omega \subset \mathbb {R}^N\) such that \[ m_0 \equiv \inf _{x \in \Omega } V(x) < \inf _{x \in \partial \Omega } V(x) \] and we set \(K = \{ x \in \Omega \;| \;V(x) = m_0\}\). For \(\hslash >0\) small we prove the existence of at least \({\mathrm{cupl}}(K) + 1\) geometrically distinct, complex-valued solutions to (0.1) whose moduli concentrate around \(K\) as \(\hslash \rightarrow 0\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J20 Variational methods for second-order elliptic equations
35Q40 PDEs in connection with quantum mechanics
35B06 Symmetries, invariants, etc. in context of PDEs

References:

[1] Alves, C.O., Figueiredo, G.M., Furtado, M.F.: Multiple solutions for a nonlinear Schrödinger equation with magnetic fields. Comm. Partial Differ. Equ. 36, 1565-1586 (2011) · Zbl 1231.35222 · doi:10.1080/03605302.2011.593013
[2] Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285-300 (1997) · Zbl 0896.35042 · doi:10.1007/s002050050067
[3] Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159, 253-271 (2001) · Zbl 1040.35107 · doi:10.1007/s002050100152
[4] Arioli, G., Szulkin, A.: A semilinear Schrödinger equations in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170, 277-295 (2003) · Zbl 1051.35082 · doi:10.1007/s00205-003-0274-5
[5] Bartsch, T.: Note on category and cup-length, private communication (2012) · Zbl 0722.58011
[6] Bartsch, T., Weth, T.: The effect of the domain’s configuration space on the number of nodal solutions of singularly perturbed elliptic equations. Topol. Methods Nonlinear Anal. 26, 109-133 (2005) · Zbl 1152.35039 · doi:10.12775/TMNA.2005.027
[7] Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313-345 (1983) · Zbl 0533.35029
[8] Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems. Nonlinear Anal. Theory Methods Appl. 7, 981-1012 (1983) · Zbl 0522.58012 · doi:10.1016/0362-546X(83)90115-3
[9] Bonheure, D., Cingolani, S., Nys, M.: Nonlinear Schrödinger equation: concentration on circles driven by an external magnetic field. Calc. Var. Partial Diff. Equ. 55, 82 (2016). doi:10.1007/s00526-016-1013-8 · Zbl 1362.35280
[10] Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185-200 (2007) · Zbl 1132.35078 · doi:10.1007/s00205-006-0019-3
[11] Byeon, J., Jeanjean, L., Tanaka, K.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases. Commun. Partial Differ. Equ. 33, 1113-1136 (2008) · Zbl 1155.35344 · doi:10.1080/03605300701518174
[12] Byeon, J., Tanaka, K.: Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential. J. Eur. Math. Soc. (JEMS) 15, 1859-1899 (2013) · Zbl 1294.35131 · doi:10.4171/JEMS/407
[13] Byeon, J., Tanaka, K.: Semiclassical standing waves with clustering peaks, for nonlinear Schrödinger equations. Memoirs of the American Mathematical Society, vol. 229, (1076), pp. viii+89. American mathematical association, USA (2014) · Zbl 1303.35094
[14] Clapp, M., Puppe, D.: Critical point theory with symmetries. J. Reine Angew. Math. 418, 1-29 (1991) · Zbl 0722.58011
[15] Cingolani, S.: Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field. J. Differ. Equ. 188, 52-79 (2003) · Zbl 1062.81056 · doi:10.1016/S0022-0396(02)00058-X
[16] Cingolani, S., Jeanjean, L., Secchi, S.: Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions. ESAIM Control Optim. Calc. Var. 15, 653-675 (2009) · Zbl 1221.35393 · doi:10.1051/cocv:2008055
[17] Cingolani, S., Jeanjean, L., Tanaka, K.: Multiplicity of positive solutions of nonlinear Schrödinger equations concentrating at a potential well. Calc. Var. Partial Differ. Equ. 53, 413-439 (2015) · Zbl 1326.35333 · doi:10.1007/s00526-014-0754-5
[18] Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1-13 (1997) · Zbl 0903.35018
[19] Cingolani, S., Lazzo, M.: Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differ. Equ. 160(1), 118-138 (2000) · Zbl 0952.35043 · doi:10.1006/jdeq.1999.3662
[20] Cingolani, S., Secchi, S.: Semiclassical limit for nonlinear Schrödinger equations with magnetic fields. J. Math. Anal. Appl. 275, 108-130 (2002) · Zbl 1014.35087 · doi:10.1016/S0022-247X(02)00278-0
[21] Cingolani, S., Secchi, S.: Semiclassical states for NLS equations with magnetic potentials having polynomial growths. J. Math. Phys. 46, 19 (2005) · Zbl 1110.81081 · doi:10.1063/1.1874333
[22] del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121-137 (1996) · Zbl 0844.35032 · doi:10.1007/BF01189950
[23] del Pino, M., Felmer, P.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149, 245-265 (1997) · Zbl 0887.35058 · doi:10.1006/jfan.1996.3085
[24] Esteban, M., Lions, P.L.: Stationary Solutions of Nonlinear Schrödinger Equations with an External Magnetic Field, in PDE and Calculus of Variations, in Honor of E. De Giorgi, Birkhäuser (1990)
[25] Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397-408 (1986) · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[26] Fournier, G., Willem, M.: Multiple solutions of the forced double pendulum equation. Ann. Inst. H. Poincaré Anal. Non Lineaire 6(suppl.), 259-281 (1989) · Zbl 0683.70022
[27] Fournier, G., Willem, M.: Relative category and the calculus of variations. Var. Methods Progr. Nonlinear Differ. Equ. Appl. Birkhauser Boston 4, 95-104 (1990) · Zbl 0719.58010
[28] Kurata, K.: Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 41, 763-778 (2000) · Zbl 0993.35081 · doi:10.1016/S0362-546X(98)00308-3
[29] Jeanjean, L., Tanaka, K.: A remark on least energy solutions in \[{\mathbb{R}}^N\] RN. Proc. Am. Math. Soc. 131, 2399-2408 (2003) · Zbl 1094.35049 · doi:10.1090/S0002-9939-02-06821-1
[30] Jeanjean, L., Tanaka, K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differ. Equ. 21, 287-318 (2004) · Zbl 1060.35012 · doi:10.1007/s00526-003-0261-6
[31] Li, Y.Y.: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 2, 955-980 (1997) · Zbl 1023.35500
[32] Oh, Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations. Commun. Partial Differ. Equ. 13, 1499-1519 (1988) · Zbl 0702.35228 · doi:10.1080/03605308808820585
[33] Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[34] Spanier, E.H.: Algebraic Topology. McGraw Hill, New York (1966) · Zbl 0145.43303
[35] Strauss, W.: Existence of solitary waves in higher dimension. Commun. Math. Phys. 55, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[36] Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Springer, New York (1999) · Zbl 0928.35157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.