×

Quantum gauge freedom in the Lorentz violating background. (English) Zbl 1421.81005

The paper deals with a gauge theory under a Lorentz violating framework. In particular, the authors discuss an Abelian \(2\)-form gauge theory invariant under a non-local Lorentz violating gauge theory within the context of Very Special Relativity. To that end, the authors perform the analysis of the \(2\)-form gauge theory by introducing a couple of formalisms, namely the gaugeon fields and the so-called Finite Field-dependent BRST transformation (FFBRST). On the one hand, they consider extra gaugeon fields with the aim to introduce quantum gauge transformations and inspect the implicit quantum gauge freedom. In this case, it is necessary to introduce subsidiary conditions of the Kugo-Ojima and Gupta-Bleuler type in order to define physical quantum states. On the other hand, the authors examine the FFBRST that explicitly introduces field dependent parameters in comparison to the standard BRST transformation. The FFBRST transformation implies a change on the definition of the functional measure through a modified Jacobian that in turn modifies the original effective action by introducing an extra term due to the dependence of the parameters on the fields.
In that sense, one of the main results of the paper is the fact that the FFBRST transformation reproduces the gaugeon modes for the 2-form Abelian gauge field under consideration. The results of the manuscript may be of certain interest from several perspectives that are fundamental to modern approaches to spacetime physics at Planckian scales, in particular to string field theory and loop quantum gravity, where Lorentz symmetry may be broken at this scale.
The article includes a complete list of speculative applications and future work on the lines of Very Special Relativity, AdS/CFT correspondence and within the framework of the Generalized Uncertainty Principles. Even though the manuscript is mostly non-rigorous in both contents and style, the article is complemented with a huge list of references that may serve as a complete guide for the interested reader.

MSC:

81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T10 Model quantum field theories
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
Full Text: DOI

References:

[1] Gambini, R. and Pullin, J., Nonstandard optics from quantum space-time, Phys. Rev. D59 (1999) 124021, arXiv:gr-qc/9809038. · Zbl 0948.83002
[2] ’t Hooft, G., Quantization of point particles in \((2 + 1)\)-dimensional gravity and space-time discreteness, Class. Quant. Grav.13 (1996) 1023, arXiv:gr-qc/9601014. · Zbl 0855.53047
[3] Horava, P., Quantum gravity at a Lifshitz point, Phys. Rev. D79 (2009) 084008, arXiv:0901.3775 [hep-th]. · Zbl 1225.83033
[4] Amelino-Camelia, G., Ellis, J. R., Mavromatos, N. E., Nanopoulos, D. V. and Sarkar, S., Tests of quantum gravity from observations of gamma-ray bursts, Nature393 (1998) 763, arXiv:astro-ph/9712103.
[5] Carroll, S. M., Harvey, J. A., Kostelecky, V. A., Lane, C. D. and Okamoto, T., Noncommutative field theory and Lorentz violation, Phys. Rev. Lett.87 (2001) 141601, arXiv:hep-th/0105082.
[6] Kajuri, N., Path integral representation for polymer quantized scalar fields, Internat. J. Modern Phys. A30(34) (2015) 1550204, arXiv:1406.7400 [gr-qc]. · Zbl 1338.81274
[7] Sargn, O. and Faizal, M., Violation of the holographic principle in the loop quantum gravity, Europhys. Lett.113(3) (2016) 30007, arXiv:1509.00843 [gr-qc].
[8] Chakravarty, S., Dasgupta, K., Ganor, O. J. and Rajesh, G., Pinned branes and new nonLorentz invariant theories, Nucl. Phys. B587 (2000) 228, arXiv:hep-th/0002175. · Zbl 1043.81643
[9] Kostelecky, V. A. and Samuel, S., Gravitational phenomenology in higher dimensional theories and strings, Phys. Rev. D40 (1989) 1886.
[10] Cohen, A. G. and Glashow, S. L., Very special relativity, Phys. Rev. Lett.97 (2006) 021601, arXiv:hep-ph/0601236. · Zbl 1228.83009
[11] Cohen, A. G. and Freedman, D. Z., SIM(2) and SUSY, J. High Energy Phys.0707 (2007) 039, arXiv:hep-th/0605172.
[12] Petras, S., von Unge, R. and Vohanka, J., SIM(2) and supergraphs, J. High Energy Phys.1107 (2011) 015, arXiv:1102.3856 [hep-th]. · Zbl 1298.81205
[13] Vohanka, J., Gauge theory and SIM(2) superspace, Phys. Rev. D85 (2012) 105009.
[14] Vohnka, J. and Faizal, M., Super-Yang-Mills theory in SIM(1) superspace, Phys. Rev. D91(4) (2015) 045015, arXiv:1409.6334 [hep-th].
[15] Kouretsis, A. P., Stathakopoulos, M. and Stavrinos, P. C., The general very special relativity in Finsler cosmology, Phys. Rev. D79 (2009) 104011, arXiv:0810.3267 [gr-qc].
[16] Muck, W., Very special relativity in curved space-times, Phys. Lett. B670 (2008) 95, arXiv:0806.0737 [hep-th].
[17] Ahluwalia, D. V. and Horvath, S. P., Very special relativity as relativity of dark matter: The Elko connection, J. High Energy Phys.1011 (2010) 078. · Zbl 1294.81306
[18] Chang, Z., Li, M. H., Li, X. and Wang, S., Cosmological model with local symmetry of very special relativity and constraints on it from supernovae, Eur. Phys. J. C73(6) (2013) 2459, arXiv:1303.1593 [astro-ph.CO].
[19] Becchi, C., Rouet, A. and Stora, R., Renormalization of gauge theories, Ann. Phys.98 (1976) 287.
[20] I. V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, arXiv:0812.0580 [hep-th].
[21] Costa, G., Julve, J., Marinucci, T. and Tonin, M., Nonabelian gauge theories and triangle anomalies, Nuovo Cim. A38 (1977) 373.
[22] Kugo, T. and Ojima, I., Manifestly covariant canonical formulation of Yang-Mills field theories: Physical state subsidiary conditions and physical S matrix unitarity, Phys. Lett. B73 (1978) 459. · Zbl 1098.81591
[23] Hata, H. and Kugo, T., Subsidiary conditions and physical S matrix unitarity in covariant canonical formulation of supergravity, Nucl. Phys. B158 (1979) 357.
[24] Faizal, M. and Khan, M., A superspace formulation of the BV action for higher derivative theories, Eur. Phys. J. C71 (2011) 1603, arXiv:1103.0221 [hep-th].
[25] Baulieu, L. and Thierry-Mieg, J., The principle of BRS symmetry: An alternative approach to Yang-Mills theories, Nucl. Phys. B197 (1982) 477.
[26] Azevedo, T. and Jusinskas, R. L., Background constraints in the infinite tension limit of the heterotic string, J. High Energy Phys.1608 (2016) 133, arXiv:1607.06805 [hep-th]. · Zbl 1390.83366
[27] Mafra, C. R. and Schlotterer, O., One-loop superstring six-point amplitudes and anomalies in pure spinor superspace, J. High Energy Phys.1604 (2016) 148, arXiv:1603.04790 [hep-th]. · Zbl 1388.83681
[28] Jusinskas, R. L., On the field-antifield (a)symmetry of the pure spinor superstring, J. High Energy Phys.1512 (2015) 136, arXiv:1510.05268 [hep-th]. · Zbl 1388.81844
[29] Jusinskas, R. L., Notes on the ambitwistor pure spinor string, J. High Energy Phys.1605 (2016) 116, arXiv:1604.02915 [hep-th]. · Zbl 1388.81555
[30] Oda, I., Covariant matrix model of superparticle in the pure spinor formalism, Mod. Phys. Lett. A18 (2003) 1023. · Zbl 1076.81576
[31] Faizal, M., Aspects of ABJ theory, J. High Energy Phys.1301 (2013) 156, arXiv:1301.4305 [hep-th]. · Zbl 1342.81632
[32] Faizal, M., Harmonic superspace Gaugeon formalism for the ABJM theory, Modern Phys. Lett. A27 (2012) 1250147, arXiv:1207.2120 [hep-th]. · Zbl 1260.81164
[33] Faizal, M., \(M\)-Theory in the Gaugeon formalism, Commun. Theor. Phys.57 (2012) 637, arXiv:1201.1220 [hep-th]. · Zbl 1247.81396
[34] Faizal, M., M-theory on deformed superspace, Phys. Rev. D84 (2011) 106011, arXiv:1111.0213 [hep-th].
[35] Faizal, M., Chern-Simons-matter theory, Internat. J. Modern Phys. A28 (2013) 1350012, arXiv:1301.5664 [math-ph]. · Zbl 1260.81223
[36] Faizal, M., Upadhyay, S. and Mandal, B. P., IR finite graviton propagators in de Sitter spacetime, Eur. Phys. J. C76(4) (2016) 189, arXiv:1604.00390 [hep-th].
[37] Chang, L. N. and Soo, C. P., BRST cohomology and invariants of 4-D gravity in Ashtekar variables, Phys. Rev. D46 (1992) 4257, arXiv:hep-th/9203014.
[38] Kachru, S., Extra states and symmetries in \(D < 2\) closed string theory, Nuclear Phys. B390 (1993) 173, arXiv:hep-th/9204053.
[39] Terao, H., Quantum analysis of Jackiw and Teitelboim’s model for \((1 + 1)\)-D gravity and topological gauge theory, Nuclear Phys. B395 (1993) 623, arXiv:hep-th/9205030.
[40] Lee, H. Y., Nakamichi, A. and Ueno, T., Topological two form gravity in four-dimensions, Phys. Rev. D47 (1993) 1563, arXiv:hep-th/9205066.
[41] Ohta, N. and Suzuki, H., Interactions of discrete states with nonzero ghost number in \(c = 1 2\)-D gravity, Modern Phys. Lett. A7 (1992) 2723, arXiv:hep-th/9205101. · Zbl 1021.81873
[42] Anselmi, D. and Fre, P., Twisted \(N = 2\) supergravity as topological gravity in four-dimensions, Nuclear Phys. B392 (1993) 401, arXiv:hep-th/9208029. · Zbl 1031.81659
[43] Faizal, M., Noncommutativity and non-anticommutativity in perturbative quantum gravity, Modern Phys. Lett. A27 (2012) 1250075, arXiv:1204.0295 [gr-qc]. · Zbl 1257.83012
[44] Faizal, M., Perturbative quantum gravity on complex spacetime, Phys. Lett. B705 (2011) 120, arXiv:1109.3443 [gr-qc]. · Zbl 1211.83014
[45] Faizal, M., Spontaneous breaking of Lorentz symmetry by ghost condensation in perturbative quantum gravity, J. Phys. A44 (2011) 402001, arXiv:1108.2853 [gr-qc]. · Zbl 1228.83046
[46] Faizal, M., BRST and anti-BRST symmetries in perturbative quantum gravity, Found. Phys.41 (2011) 270, arXiv:1010.1143 [gr-qc]. · Zbl 1211.83014
[47] Faizal, M., Noncommutative quantum gravity, Modern Phys. Lett. A28 (2013) 1350034, arXiv:1302.5156 [gr-qc].
[48] Faizal, M., Noether’s charge in the super-group field cosmology, Grav. Cosmol.20(2) (2014) 132, arXiv:1303.5478 [gr-qc]. · Zbl 1338.83199
[49] Faizal, M., Absence of black holes information paradox in group field cosmology, Internat J. Geom. Methods Mod. Phys.11 (2014) 1450010, arXiv:1301.0224 [gr-qc]. · Zbl 1282.83030
[50] Faizal, M., Super-group field cosmology, Class. Quantum Gravit.29 (2012) 215009, arXiv:1209.2346 [gr-qc]. · Zbl 1266.83146
[51] Troost, J., Massless particles on supergroups and \(A d S_3 x S^3\) supergravity, J. High Energy Phys.1107 (2011) 042, arXiv:1102.0153 [hep-th]. · Zbl 1298.81334
[52] Faizal, M., The BV formalization of Chern-Simons theory on deformed superspace, Commun. Theor. Phys.58 (2012) 704, arXiv:1207.6564 [hep-th]. · Zbl 1264.81258
[53] Banerjee, R. and Deguchi, S., A superspace formulation of Yang-Mills theory on sphere, J. Math. Phys.51 (2010) 052301, arXiv:0905.3050 [hep-th]. · Zbl 1310.81122
[54] Ulker, K., \(N = 2\) SYM action as a BRST exact term, topological Yang-Mills and instantons, Phys. Rev. D68 (2003) 085005, arXiv:hep-th/0304154.
[55] Shah, M. B., Faizal, M., Ganai, P. A., Zaz, Z., Bhat, A. and Masood, S., Boundary effects in super-Yang-Mills theory, Eur. Phys. J. C77(5) (2017) 309.
[56] Lehum, A. C., Nascimento, J. R., Petrov, A. Y. and da Silva, A. J., Supergauge theories in aether superspace, Phys. Rev. D88 (2013) 045022, arXiv:1305.1812 [hep-th].
[57] Weinreb, P. and Faizal, M., Generalized Faddeev-Popov method for a deformed supersymmetric Yang-Mills theory, Phys. Lett. B748 (2015) 102, arXiv:1506.07618 [hep-th]. · Zbl 1345.81085
[58] Upadhyay, S. and Panigrahi, P. K., Quantum gauge freedom in very special relativity, Nuclear Phys. B915 (2017) 168, arXiv:1608.03947 [hep-th]. · Zbl 1354.81038
[59] Upadhyay, S., Shah, M. B. and Ganai, P. A., Lorentz violating \(p\)-form gauge theories in superspace, Eur. Phys. J. C77(3) (2017) 157, arXiv:1702.05755 [hep-th].
[60] J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Internat. J. Theor. Phys.38 (1999) 1113, [Adv. Theor. Math. Phys.2 (1998) 231] arXiv:hep-th/9711200. · Zbl 0914.53047
[61] Gustavsson, A., Selfdual strings and loop space Nahm equations, J. High Energy Phys.0804 (2008) 083, arXiv:0802.3456 [hep-th]. · Zbl 1246.81253
[62] Bagger, J. and Lambert, N., Comments on multiple M2-branes, J. High Energy Phys.0802 (2008) 105, arXiv:0712.3738 [hep-th].
[63] Bagger, J. and Lambert, N., Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D77 (2008) 065008, arXiv:0711.0955 [hep-th].
[64] Faizal, M., Deformation of the ABJM theory, Europhys. Lett.98 (2012) 31003, arXiv:1204.1191 [hep-th]. · Zbl 1260.81164
[65] Aharony, O., Bergman, O., Jafferis, D. L. and Maldacena, J., \(N = 6\) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, J. High Energy Phys.0810 (2008) 091, arXiv:0806.1218 [hep-th]. · Zbl 1245.81130
[66] Aharony, O., Bergman, O. and Jafferis, D. L., Fractional M2-branes, J. High Energy Phys.0811 (2008) 043, arXiv:0807.4924 [hep-th]. · Zbl 1245.81130
[67] Faizal, M., Non-anticommutative ABJ theory, Nuclear Phys. B869 (2013) 598, arXiv:1301.0223 [hep-th]. · Zbl 1262.81074
[68] Queiruga, J. M., Lehum, A. C. and Faizal, M., Khlerian effective potentials for ChernSimons-matter theories, Nuclear Phys. B902 (2016) 58, arXiv:1511.03586 [hep-th]. · Zbl 1332.81189
[69] Antonyan, E. and Tseytlin, A. A., On 3d \(N = 8\) Lorentzian BLG theory as a scaling limit of 3d superconformal \(N = 6\) ABJM theory, Phys. Rev. D79 (2009) 046002, arXiv:0811.1540 [hep-th].
[70] Berman, D. S., Perry, M. J., Sezgin, E. and Thompson, D. C., Boundary conditions for interacting membranes, J. High Energy Phys.1004 (2010) 025, arXiv:0912.3504 [hep-th]. · Zbl 1272.81140
[71] Aprile, F. and Niarchos, V., \( \mathcal{N} = 2\) supersymmetric field theories on 3-manifolds with A-type boundaries, J. High Energy Phys.1607 (2016) 126, arXiv:1604.01561 [hep-th]. · Zbl 1390.81556
[72] Faizal, M., Gauge and supersymmetric invariance of a boundary Bagger-Lambert-Gustavsson theory, J. High Energy Phys.1204 (2012) 017, arXiv:1204.0297 [hep-th]. · Zbl 1348.81406
[73] Belyaev, D. V. and van Nieuwenhuizen, P., Simple \(d = 4\) supergravity with a boundary, J. High Energy Phys.0809 (2008) 069, arXiv:0806.4723 [hep-th]. · Zbl 1245.83074
[74] Faizal, M., Luo, Y., Smith, D. J., Tan, M. C. and Zhao, Q., Gauge and supersymmetry invariance of \(\mathcal{N} = 2\) boundary ChernSimons theory, Nuclear Phys. B914 (2017) 577, arXiv:1601.05429 [hep-th]. · Zbl 1353.81092
[75] Faizal, M., Boundary effects in the BLG theory, Modern Phys. Lett. A29(31) (2014) 1450154, arXiv:1303.5477 [hep-th]. · Zbl 1301.81207
[76] Berman, D. S. and Thompson, D. C., Membranes with a boundary, Nuclear Phys. B820 (2009) 503, arXiv:0904.0241 [hep-th]. · Zbl 1194.81186
[77] Faizal, M. and Smith, D. J., Nonanticommutativity in the presence of a boundary, Phys. Rev. D87(2) (2013) 025019, arXiv:1211.3654 [hep-th].
[78] Bilal, A., Supersymmetric boundaries and junctions in four dimensions, J. High Energy Phys.1111 (2011) 046, arXiv:1103.2280 [hep-th]. · Zbl 1306.81061
[79] Belyaev, D. V. and Pugh, T. G., The supermultiplet of boundary conditions in supergravity, J. High Energy Phys.1010 (2010) 031, arXiv:1008.1574 [hep-th]. · Zbl 1291.81347
[80] Faizal, M. and Awad, A., Four dimensional supersymmetric theories in presence of a boundary, Phys. Lett. B748 (2015) 414, arXiv:1502.07717 [hep-th]. · Zbl 1345.81116
[81] Belyaev, D. V. and van Nieuwenhuizen, P., Rigid supersymmetry with boundaries, J. High Energy Phys.0804 (2008) 008, arXiv:0801.2377 [hep-th].
[82] Vohnka, J. and Faizal, M., Supersymmetric Chern-Simons theory in presence of a boundary in the light-like direction, Nuclear Phys. B904 (2016) 327, arXiv:1505.08112 [hep-th]. · Zbl 1332.81142
[83] Gribov, V. N., Quantization of nonabelian gauge theories, Nuclear Phys. B139 (1978) 1.
[84] Singer, I. M., Some remarks on the Gribov ambiguity, Commun. Math. Phys.60 (1978) 7. · Zbl 0379.53009
[85] Shigemoto, K., Field strength method and Gribov ambiguity in two-dimensional nonabelian gauge theory, Lett. Nuovo Cim.24 (1979) 495.
[86] Killingback, T. P., The Gribov ambiguity in gauge theories on the 4 torus, Phys. Lett. B138 (1984) 87.
[87] Zwanziger, D., Nonperturbative modification of the Faddeev-popov formula and banishment of the naive vacuum, Nuclear Phys. B209 (1982) 336.
[88] Zwanziger, D., Local and renormalizable action from the Gribov horizon, Nuclear Phys. B323 (1989) 513.
[89] Capri, M. A. L., Dudal, D., Pereira, A. D., Fiorentini, D., Guimaraes, M. S., Mintz, B. W., Palhares, L. F. and Sorella, S. P., Nonperturbative aspects of Euclidean Yang-Mills theories in linear covariant gauges: Nielsen identities and a BRST-invariant two-point correlation function, Phys. Rev. D95(4) (2017) 045011.
[90] Zwanziger, D., Action from the Gribov horizon, Nuclear Phys. B321 (1989) 591.
[91] Guimaraes, M. S., Pereira, A. D. and Sorella, S. P., Remarks on the effects of the Gribov copies on the infrared behavior of higher dimensional Yang-Mills theory, Phys. Rev. D94(11) (2016) 116011, arXiv:1608.06979 [hep-th].
[92] Kempf, A., Mangano, G. and Mann, R. B., Hilbert space representation of the minimal length uncertainty relations, Phys. Rev. D52 (1995) 1108.
[93] Maggiore, M., A generalized uncertainty principle in quantum gravity, Phys. Lett. B304 (1993) 65.
[94] Faizal, M., Ali, A. F. and Nassar, A., AdS/CFT correspondence beyond its supergravity approximation, Internat J. Modern Phys. A30(30) (2015) 1550183, arXiv:1405.4519 [hep-th]. · Zbl 1335.81119
[95] Faizal, M., Supersymmetry breaking as a new source for the generalized uncertainty principle, Phys. Lett. B757 (2016) 244, arXiv:1605.00925 [hep-th]. · Zbl 1360.81210
[96] Gangopadhyay, S., Dutta, A. and Faizal, M., Constraints on the generalized uncertainty principle from Black hole thermodynamics, Europhys. Lett.112(2) (2015) 20006, arXiv:1501.01482 [gr-qc].
[97] Rizwan, M. and Saifullah, K., GUP-corrected thermodynamics of accelerating and rotating black holes, Internat J. Modern Phys. D26(5) (2017) 1741018. · Zbl 1368.83046
[98] Asghari, M. and Pedram, P., \( \lambda \phi^4\) Kink and sine-Gordon Soliton in the GUP framework, Internat. J. Modern Phys. D23(4) (2014) 1450039, arXiv:1402.3770 [hep-th]. · Zbl 1284.81102
[99] Faizal, M. and Khalil, M. M., GUP-corrected thermodynamics for all black objects and the existence of remnants, Internat. J. Modern Phys. A30(22) (2015) 1550144, arXiv:1411.4042 [gr-qc]. · Zbl 1330.83021
[100] Tang, J., Feng, Z., Ren, W. and Chen, B., GUP corrected fermion tunnelling from \(2 + 1\) dimensional black string, Intranet. J. Theor. Phys.55(1) (2016) 495. · Zbl 1337.83047
[101] Faizal, M., Ali, A. F. and Nassar, A., Generalized uncertainty principle as a consequence of the effective field theory, Phys. Lett. B765 (2017) 238, arXiv:1701.00341 [hep-th]. · Zbl 1369.81084
[102] Bhat, A., Dey, S., Faizal, M., Hou, C. and Zhao, Q., Modification of Schrodinger-Newton equation due to braneworld models with minimal length, Phys. Lett. B770 (2017) 325.
[103] Atazadeh, K. and Darabi, F., Einstein static universe from GUP, Phys. Dark Univ.16 (2017) 87, arXiv:1701.00060 [gr-qc]. · Zbl 1387.83124
[104] Abdelkhalek, K., Chemissany, W., Fiedler, L., Mangano, G. and Schwonnek, R., Optimal uncertainty relations in a modified Heisenberg algebra, Phys. Rev. D94(12) (2016) 123505, arXiv:1607.00081 [quant-ph].
[105] Zhao, Q., Faizal, M. and Zaz, Z., Short distance modification of the quantum virial theorem, Phys. Lett. B770 (2017) 564, arXiv:1707.00636 [hep-th]. · Zbl 1403.81065
[106] Khodadi, M., Nozari, K. and Hajizadeh, A., Some astrophysical aspects of a Schwarzschild geometry equipped with a minimal measurable length, Phys. Lett. B770 (2017) 556, arXiv:1702.06357 [gr-qc].
[107] Castro, L. B. and Obispo, A. E., Generalized relativistic harmonic oscillator in minimal length quantum mechanics, J. Phys. A50(28) (2017) 285202, arXiv:1612.01552 [hep-th]. · Zbl 1370.81069
[108] Masood, S., Faizal, M., Zazz, Z., Ali, A. F., Raza, J. and Shah, M. B., The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle, Phys. Lett. B763 (2016) 218. · Zbl 1370.81091
[109] Yokoyama, K. I., Canonical quantum electrodynamics with invariant one-parameter gauge families, Prog. Theor. Phys.51 (1974) 1956.
[110] Yokoyama, K. I., Canonical Yang-Mills field theory with invariant gauge families: Introduction of gauge parameters as a group vector, Prog. Theor. Phys.59 (1978) 1699. · Zbl 1098.81727
[111] Yokoyama, K. I., Gauge independence as a consequence of gauge covariance, Phys. Lett. B79 (1978) 79.
[112] Yokoyama, K. I. and Kubo, R., Gauge-structure of canonical quantum electrodynamics, Prog. Theor. Phys.52 (1974) 290.
[113] K. I. Yokoyama, M. Takeda and M. Monda, On finite local gauge transformations in a Yang-Mills field theory with invariant gauge families, Prog. Theor. Phys.60 (1978) 927, Erratum: [Prog. Theor. Phys.60 (1978) 1609], Erratum: [Prog. Theor. Phys.61 (1979) 697].
[114] Yokoyama, K. I., Takeda, M. and Monda, M., Gauge covariance in nonabelian gauge theories, Prog. Theor. Phys.64 (1980) 1412. · Zbl 1059.81566
[115] Hayakawa, M. and Yokoyama, K., Gauge, renormalization and the goto-imamura-schwinger term in quantum electrodynamics, Prog. Theor. Phys.44 (1970) 533.
[116] Izawa, K. I., Simple BRS gauge fixing, Prog. Theor. Phys.88 (1992) 759.
[117] Koseki, M., Sato, M. and Endo, R., Gaugeon formalism with BRST symmetry, Prog. Theor. Phys.90 (1993) 1111.
[118] Kugo, T. and Ojima, I., Local covariant operator formalism of nonabelian gauge theories and quark confinement problem, Prog. Theor. Phys. Suppl.66 (1979) 1. · Zbl 1098.81592
[119] Kugo, T. and Ojima, I., Subsidiary conditions and physical S matrix unitarity in indefinite metric quantum gravitational theory, Nuclear Phys. B144 (1978) 234.
[120] Koseki, M., Sato, M. and Endo, R., Bull. Yamagata Univ., Nat. Sci.14 (1996) 15.
[121] Nakawaki, Y., Prog. Theor. Phys.98 (1997) 5.
[122] Endo, R. and Koseki, M., Prog. Theor. Phys.103 (2000) 3.
[123] Wei, H. and Cai, R. G., A new model of agegraphic dark energy, Phys. Lett. B660 (2008) 113.
[124] Faizal, M., \(M\)-Theory in the Gaugeon formalism, Commun. Theor. Phys.57 (2012) 637. · Zbl 1247.81396
[125] S. Upadhyay, Field-dependent quantum gauge transformation, Europhys. Lett.105 (2014) 21001. S. Upadhyay, Gaugeon formalism for perturbative quantum gravity, Eur. Phys. J. C74 (2014) 2737. S. Upadhyay, Generalised BRST symmetry and gaugeon formalism for perturbative quantum gravity: Novel observation, Ann. Phys.344 (2014) 290. · Zbl 1343.81174
[126] Kalb, M. and Ramond, P., Classical direct interstring action, Phys. Rev. D9 (1974) 2273.
[127] F. Lund and T. Regge, Unified approach to strings and vortices with soliton solutions, Phys. Rev. D14 (1976) 1524; M. Sato and S. Yahikozawa, Nuclear Phys. B436 (1995) 100. · Zbl 0996.81509
[128] A. Sugamoto, Dual transformation in gauge theories, Phys. Rev. D19 (1979) 1820; R. L. Davis and E. P. S. Shellard, Antisymmetric tensors and spontaneous symmetry breaking, Phys. Lett. B214 (1988) 219.
[129] Salam, A. and Sezgin, E., Supergravities in Diverse Dimensions (North-Holland/Amsterdam and World Scientific, Singapore, 1989). · Zbl 0686.53061
[130] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory (Cambridge University Press, New York, 1987); J. Polchinski, String Theory (Cambridge University Press, New York, 1998). · Zbl 0619.53002
[131] E. Cremmer and J. Scherk, Nuclear Phys. B72 (1974) 117; A. Aurilia and Y. Takahashi, Prog. Theor. Phys.66 (1981) 693; I. Oda and S. Yahikozawa, ibid.83 (1990) 991; T. J. Allen, M. J. Bowick and A. Lahiri, Modern Phys. Lett. A6 (1991) 559; S. Deguchi, T. Mukai and T. Nakajima, Phys. Rev. D59 (1999) 65003 59.
[132] P. G. O. Freund and R. I. Nepomechie, Nuclear Phys. B199 (1982) 482; J. A. de Azcarraga, J. M. Izquierdo and P. K. Townsend, Phys. Rev. D45 (1992) R3321; S. Deguchi and T. Nakajima, Internat. J. Modern Phys. A9 (1994) 1889.
[133] Townsend, P. K., Covariant quantization of antisymmetric tensor gauge fields, Phys. Lett. B88 (1979) 97.
[134] T. Kimura, Prog. Theor. Phys.64 (1980) 357; H. Hata, T. Kugo and N. Ohta, Nuclear Phys. B178 (1981) 527; M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992); J. Gomis, J. Paris, and S. Samuel, Phys. Rep.259 (1995) 1.
[135] J. Thierry-Mieg and L. Baulieu, Covariant quantization of nonabelian antisymmetric tensor gauge theories, Nuclear Phys. B228 (1983) 259; J. Barcelos-Neto and R. Thibes, Two-form gauge fields in the Becchi-Rouet-Stora-Tyutin superspace, J. Math. Phys.39 (1998) 5669.
[136] Green, M. B., Schwarz, J. H. and Witten, E., Superstring Theory (Cambridge University Press, 1987). · Zbl 0619.53002
[137] Henneaux, M. and Teitelboim, C., Quantization of Gauge Systems (Princeton, USA: University Press, 1992). · Zbl 0838.53053
[138] Weinberg, S., The Quantum Theory of Fields, Vol-II: Modern Applications (Cambridge, UK, University Press, 1996). · Zbl 0959.81002
[139] S. Upadhyay, Internat. J. Modern Phys. A31 (2016) 1650148; Internat. J. Modern Phys. A31 (2016) 1650112; Internat. J. Theor. Phys.55 (2016) 4005; Eur. Phys. J. C75 (2015) 593; Phys. Rev. D92 (2015) 065027; Prog. Theor. Exp. Phys.093B06 (2015) 1; Internat. J. Modern Phys. A30 (2015) 1550150; Phys. Lett. B723 (2013) 470; Europhys. Lett.103 (2013) 61002; M. Faizal and S. Upadhyay, Phys. Lett. B736 (2014) 288; S. Upadhyay, M. K. Dwivedi and B. P. Mandal, Internat. J. Theor. Phys.54 (2015) 2076; S. Upadhyay and B. P. Mandal, Eur. Phys. J. C72 (2012) 2059.
[140] Abhinav, K., Shukla, A. and Panigrahi, P. K., Novel symmetries in Weyl-invariant gravity with massive gauge field, Eur. Phys. J. C76(11) (2016) 639. · Zbl 1354.83049
[141] Kumar, R., Krishna, S., Shukla, A. and Malik, R. P., Abelian p-form \((p = 1, 2, 3)\) gauge theories as the field theoretic models for the Hodge theory, Internat. J. Modern Phys. A29(24) (2014) 1450135. · Zbl 1301.81146
[142] S. Upadhyay and B. P. Mandal, Noncommutative gauge theories: Model for Hodge theory, Internat. J. Modern Phys. A28 (2013) 1350122; Eur. Phys. J. C71 (2011) 1759. · Zbl 1277.81082
[143] Joglekar, S. D. and Mandal, B. P., Phys. Rev. D51 (1995) 1919.
[144] S. Upadhyay, Phys. Lett. B740 (2015) 341; Ann. Phys.356 (2015) 299; Modern Phys. Lett. A30 (2015) 1550072; Ann. Phys.340 (2014) 110; arXiv:1308.0982 [hep-th]; Europhys. Lett.104 (2013) 61001; Phys. Lett. B727 (2013) 293.
[145] S. Upadhyay and B. Paul, BRST symmetry for ReggeTeitelboim-based minisuperspace models, Eur. Phys. J. C76(7) (2016) 394; S. Upadhyay, M. Oksanen and R. Bufalo, arXiv:1510.00188 [hep-th].
[146] R. Banerjee and S. Upadhyay, Generalized supersymmetry and sigma models, Phys. Lett. B734 (2014) 369; S. Upadhyay, M. Faizal and P. A. Ganai, Internat. J. Modern Phys. A30 (2015) 1550185. · Zbl 1380.81384
[147] Banerjee, R., Paul, B. and Upadhyay, S., BRST symmetry and \(W\)-algebra in higher derivative models, Phys. Rev. D88 (2013) 065019.
[148] Upadhyay, S. and Das, D., ABJM theory in Batalin-Vilkovisky formulation, Phys. Lett. B733 (2014) 63. · Zbl 1370.81123
[149] Upadhyay, S. and Ganai, P. A., Prog. Theor. Exp. Phys.063B04 (2016), arXiv:1605.04290.
[150] S. Upadhyay and B. P. Mandal, Eur. Phys. J. C75 (2015) 327; Internat. J. Theor. Phys.55 (2016) 1; Phys. Lett. B744 (2015) 231; Prog. Theor. Exp. Phys. (2014) 053B04; Eur. Phys. J. C72 (2012) 2065; Ann. Phys.327 (2012) 2885; AIP Conf. Proc.1444 (2012) 213; Eur. Phys. Lett.93 (2011) 31001; Modern Phys. Lett. A25 (2010) 3347; B. P. Mandal, S. K. Rai and S. Upadhyay, Europhys. Lett.92 (2010) 21001; S. Upadhyay, M. K. Dwivedi and B. P. Mandal, Internat. J. Modern Phys. A30 (2015) 1550178; Internat. J. Modern Phys. A28 (2013) 1350033.
[151] M. Faizal, B. P. Mandal and S. Upadhyay, Finite BRST transformations for the Bagger-Lambert-Gustavasson theory, Phys. Lett. B721 (2013) 159; M. Faizal, S. Upadhyay and B. P. Mandal, Phys. Lett. B738 (2014) 201. · Zbl 1307.81056
[152] Upadhyay, S., Reshetnyak, A. and Mandal, B. P., Comments on interactions in the SUSY models, Eur. Phys. J. C76(7) (2016) 391.
[153] Moshin, P. Y. and Reshetnyak, A. A., Internat. J. Modern Phys. A30 (2015) 1550021.
[154] Moshin, P. Y. and Reshetnyak, A. A., Finite BRST-ANTIBRST transformation for the theories with gauge group, Phys. Lett. B739 (2014) 110. · Zbl 1306.70019
[155] P. Y. Moshin and A. A. Reshetnyak, Finite field-dependent BRST-antiBRST transformations: Jacobians and application to the standard model, arXiv:1506.04660 [hep-th]. · Zbl 1346.81080
[156] Kober, M., Gauge theories under incorporation of a generalized uncertainty principle, Phys. Rev. D82 (2010) 085017, arXiv:1008.0154 [physics.gen-ph].
[157] Faizal, M. and Majumder, B., Incorporation of generalized uncertainty principle into Lifshitz field theories, Ann. Phys.357 (2015) 49, arXiv:1408.3795 [hep-th]. · Zbl 1343.81168
[158] Faizal, M., Consequences of deformation of the Heisenberg algebra, Internat. J. Geom. Methods Mod. Phys.12(2) (2014) 1550022, arXiv:1404.5024 [hep-th]. · Zbl 1309.81108
[159] Kober, M., Electroweak theory with a minimal length, Internat. J. Modern Phys. A26 (2011) 4251, arXiv:1104.2319 [hep-ph]. · Zbl 1247.81631
[160] Feng, Z.-W., Yang, S.-Z., Li, H.-L., Zu, X.-T., Constraining the generalized uncertainty principle with the gravitational wave event GW15091, Phys. Lett. B768 (2017) 81-85.
[161] Garattini, R., Distorting general relativity: Gravity’s rainbow and f(R) theories at work, J. Cosmol. Astrophys.1306 (2013) 017.
[162] Garattini, R., Self sustained traversable wormholes induced by gravity’s rainbow and noncommutative geometry, EPJ Web Conf.58 (2013) 01007. · Zbl 1334.83035
[163] Amelino-Camelia, G., Arzano, M., Gubitosi, G. and Magueijo, J., Rainbow gravity and scale-invariant fluctuations, Phys. Rev. D88(4) (2013) 041303. · Zbl 1329.83202
[164] Magueijo, J. and Smolin, L., Gravity’s rainbow, Class. Quantum Gravit.21 (2004) 1725, arXiv:gr-qc/0305055. · Zbl 1051.83004
[165] Hendi, S. H., Panahiyan, S., Panah, B. Eslam, Faizal, M. and Momennia, M., Critical behavior of charged black holes in Gauss-Bonnet gravitys rainbow, Phys. Rev. D94(2) (2016) 024028. · Zbl 1366.83077
[166] Hendi, S. H., Dehghani, A. and Faizal, M., Black hole thermodynamics in Lovelock gravity’s rainbow with (A)dS asymptote, Nuclear Phys. B914 (2017) 117. · Zbl 1353.83019
[167] Sefiedgar, A. S., From the entropic force to the Friedmann equation in rainbow gravity, Europhys. Lett.117(6) (2017) 69001.
[168] Alsaleh, S., Thermodynamics of rotating Kaluza-Klein black holes in gravitys rainbow, Eur. Phys. J. Plus132(4) (2017) 181. · Zbl 1366.83030
[169] Hendi, S. H., Panah, B. Eslam, Panahiyan, S. and Momennia, M., F(R) gravity’s rainbow and its Einstein counterpart, Adv. High Energy Phys.2016 (2016) 9813582. · Zbl 1366.83077
[170] Gangopadhyay, S. and Dutta, A., Constraints on rainbow gravity functions from black hole thermodynamics, Europhys. Lett.115(5) (2016) 50005.
[171] Hendi, S. H. and Faizal, M., Black holes in Gauss-Bonnet gravitys rainbow, Phys. Rev. D92(4) (2015) 044027.
[172] Hendi, S. H., Faizal, M., Panah, B. E. and Panahiyan, S., Charged dilatonic black holes in gravitys rainbow, Eur. Phys. J. C76(5) (2016) 296.
[173] Ashour, A., Faizal, M., Ali, A. F. and Hammad, F., Branes in gravitys rainbow, Eur. Phys. J. C76(5) (2016) 264.
[174] Hendi, S. H., Momennia, M., Panah, B. Eslam and Faizal, M., Nonsingular universes in Gauss-Bonnet gravitys rainbow, Astrophys. J.827(2) (2016) 153.
[175] Ali, A. F., Faizal, M., Majumder, B. and Mistry, R., Gravitational collapse in gravity’s rainbow, Internat J. Geom. Methods Mod. Phys.12(9) (2015) 1550085. · Zbl 1329.83135
[176] Ali, A. F., Faizal, M. and Majumder, B., Absence of an effective horizon for black holes in gravity’s rainbow, Europhys. Lett.109(2) (2015) 20001.
[177] Ali, A. F., Faizal, M. and Khalil, M. M., Remnants of black rings from gravity’s rainbow, J. High Energy Phys.1412 (2014) 159.
[178] Ali, A. F., Faizal, M. and Khalil, M. M., Absence of black holes at LHC due to gravity’s rainbow, Phys. Lett. B743 (2015) 295.
[179] Rudra, P., Faizal, M. and Ali, A. F., Vaidya spacetime for Galileon gravity’s rainbow, Nuclear Phys. B909 (2016) 725. · Zbl 1342.83013
[180] Ali, A. F., Faizal, M. and Khalil, M. M., Remnant for all black objects due to gravity’s rainbow, Nuclear Phys. B894 (2015) 341. · Zbl 1328.83061
[181] Galan, P. and Marugan, G. A. Mena, Entropy and temperature of black holes in a gravity’s rainbow, Phys. Rev. D74 (2006) 044035, arXiv:gr-qc/0608061.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.