×

Noncommutative gauge theories: model for Hodge theory. (English) Zbl 1277.81082

Summary: The nilpotent Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST, dual-BRST and anti-dual-BRST symmetry transformations are constructed in the context of noncommutative (NC) 1-form as well as 2-form gauge theories. The corresponding Noether’s charges for these symmetries on the Moyal plane are shown to satisfy the same algebra, as by the de Rham cohomological operators of differential geometry. The Hodge decomposition theorem on compact manifold is also studied. We show that noncommutative gauge theories are field theoretic models for Hodge theory.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T70 Quantization in field theory; cohomological methods
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
58A15 Exterior differential systems (Cartan theory)

References:

[1] DOI: 10.1016/S0370-2693(98)00199-3 · doi:10.1016/S0370-2693(98)00199-3
[2] Ardalan F., J. High Energy Phys. 9902 pp 016–
[3] DOI: 10.1016/S0550-3213(00)00096-1 · Zbl 1056.81539 · doi:10.1016/S0550-3213(00)00096-1
[4] Douglas M. R., J. High Energy Phys. 9802 pp 008–
[5] Seiberg N., J. High Energy Phys. 9909 pp 032–
[6] DOI: 10.1016/j.physletb.2008.01.029 · Zbl 1246.83151 · doi:10.1016/j.physletb.2008.01.029
[7] Chaichian M., J. High Energy Phys. 0804 pp 064–
[8] DOI: 10.1103/PhysRevD.67.105005 · doi:10.1103/PhysRevD.67.105005
[9] Micu A., J. High Energy Phys. 0101 pp 025–
[10] Sundermeyer K., Lecture Notes in Physics 169, in: Constrained Dynamics (1982) · Zbl 0508.58002
[11] DOI: 10.1016/0370-1573(80)90130-1 · doi:10.1016/0370-1573(80)90130-1
[12] DOI: 10.1143/PTP.80.897 · doi:10.1143/PTP.80.897
[13] DOI: 10.1143/PTP.80.905 · doi:10.1143/PTP.80.905
[14] DOI: 10.1016/0550-3213(91)90623-6 · doi:10.1016/0550-3213(91)90623-6
[15] DOI: 10.1103/PhysRevLett.64.2863 · Zbl 1050.81693 · doi:10.1103/PhysRevLett.64.2863
[16] DOI: 10.1140/epjc/s10052-011-1759-2 · doi:10.1140/epjc/s10052-011-1759-2
[17] DOI: 10.1016/S0370-2693(01)01478-2 · Zbl 0983.81060 · doi:10.1016/S0370-2693(01)01478-2
[18] McMullan D., Phys. Rev. Lett. 71 pp 3758–
[19] McMullan D., Phys. Rev. Lett. 75 pp 4151–
[20] DOI: 10.1103/PhysRevLett.75.4150 · doi:10.1103/PhysRevLett.75.4150
[21] Rivelles V. O., Phys. Rev. D 53 pp 3257–
[22] Blaschke D. N., J. High Energy Phys. 1306 pp 038–
[23] DOI: 10.1140/epjc/s10052-012-2262-0 · doi:10.1140/epjc/s10052-012-2262-0
[24] Micu A., J. High Energy Phys. 01 pp 025–
[25] Curci G., Phys. Lett. B 63 pp 51–
[26] DOI: 10.1016/0370-2693(81)90365-8 · doi:10.1016/0370-2693(81)90365-8
[27] DOI: 10.1140/epjc/s10052-012-2059-1 · doi:10.1140/epjc/s10052-012-2059-1
[28] Morita S., AMS Translations of Mathematical Monographs 209, in: Geometry of Differential Forms (2001)
[29] Frank F. W., Foundations of Differentiable Manifolds and Lie Groups (1983) · Zbl 0516.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.