×

The supermultiplet of boundary conditions in supergravity. (English) Zbl 1291.81347

Summary: Boundary conditions in supergravity on a manifold with boundary relate the bulk gravitino to the boundary supercurrent, and the normal derivative of the bulk metric to the boundary energy-momentum tensor. In the 3D \(N = 1\) setting, we show that these boundary conditions can be stated in a manifestly supersymmetric form. We identify the Extrinsic Curvature Tensor Multiplet, and show that boundary conditions set it equal to (a conjugate of) the boundary supercurrent multiplet. Extension of our results to higher-dimensional models (including the Randall-Sundrum and Horava-Witten scenarios) is discussed.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E50 Supergravity
81T20 Quantum field theory on curved space or space-time backgrounds

References:

[1] P. Di Vecchia, B. Durhuus, P. Olesen and J.L. Petersen, Fermionic Strings With Boundary Terms, Nucl. Phys.B 207 (1982) 77 [SPIRES]. · doi:10.1016/0550-3213(82)90137-7
[2] P. Di Vecchia, B. Durhuus, P. Olesen and J.L. Petersen, Fermionic Strings With Boundary Terms. 2. The O(2) String, Nucl. Phys.B 217 (1983) 395 [SPIRES]. · doi:10.1016/0550-3213(83)90154-2
[3] S.W. Hawking, The Boundary Conditions For Gauged Supergravity, Phys. Lett.B 126 (1983) 175 [SPIRES].
[4] Y. Igarashi, Supersymmetry And The Casimir Effect Between Plates, Phys. Rev.D 30 (1984) 1812 [SPIRES].
[5] Y. Igarashi and T. Nonoyama, Supergravity And Casimir Energy In A Plane Geometry, Phys. Lett.B 161 (1985) 103 [SPIRES].
[6] Y. Igarashi and T. Nonoyama, Supersymmetry And Reflective Boundary Conditions In Anti-De Sitter Spaces, Phys. Rev.D 34 (1986) 1928 [SPIRES].
[7] S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys.B 326 (1989) 108 [SPIRES]. · doi:10.1016/0550-3213(89)90436-7
[8] H. Lückock, Quantum Geometry Of Strings With Boundaries, Ann. Phys.194 (1989) 113 [SPIRES]. · doi:10.1016/0003-4916(89)90033-X
[9] H. Lückock, Boundary conditions for Nicolai maps, J. Phys.A 24 (1991) L1057 [SPIRES].
[10] N.P. Warner, Supersymmetry in boundary integrable models, Nucl. Phys.B 450 (1995) 663 [hep-th/9506064] [SPIRES]. · Zbl 0925.81346 · doi:10.1016/0550-3213(95)00402-E
[11] C. Albertsson, U. Lindström and M. Zabzine, N = 1 supersymmetric σ-model with boundaries. I, Commun. Math. Phys.233 (2003) 403 [hep-th/0111161] [SPIRES]. · Zbl 1028.81044
[12] C. Albertsson, U. Lindström and M. Zabzine, N =1 supersymmetric σ-model with boundaries. II, Nucl. Phys.B 678 (2004) 295 [hep-th/0202069] [SPIRES]. · Zbl 1097.81548 · doi:10.1016/j.nuclphysb.2003.11.024
[13] U. Lindström and M. Zabzine, D-branes in N =2 WZW models, Phys. Lett.B 560 (2003) 108 [hep-th/0212042] [SPIRES]. · Zbl 1032.81028
[14] P. Hořava and E. Witten, Eleven-Dimensional Supergravity on a Manifold with Boundary, Nucl. Phys.B 475 (1996) 94 [hep-th/9603142] [SPIRES]. · Zbl 0925.81180
[15] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [SPIRES]. · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[16] R. Altendorfer, J. Bagger and D. Nemeschansky, Supersymmetric Randall-Sundrum scenario, Phys. Rev.D 63 (2001) 125025 [hep-th/0003117] [SPIRES].
[17] A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, Phys. Rev.D 59 (1999) 086001 [hep-th/9803235] [SPIRES].
[18] A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M-theory in five dimensions, Nucl. Phys.B 552 (1999) 246 [hep-th/9806051] [SPIRES]. · Zbl 0958.81117 · doi:10.1016/S0550-3213(99)00196-0
[19] U. Lindström, M. Roček and P. van Nieuwenhuizen, Consistent boundary conditions for open strings, Nucl. Phys.B 662 (2003) 147 [hep-th/0211266] [SPIRES]. · Zbl 1027.83027 · doi:10.1016/S0550-3213(03)00262-1
[20] D.V. Belyaev, Boundary conditions in the Mirabelli and Peskin model, JHEP01 (2006) 046 [hep-th/0509171] [SPIRES]. · doi:10.1088/1126-6708/2006/01/046
[21] D.V. Belyaev and P. van Nieuwenhuizen, Rigid supersymmetry with boundaries, JHEP04 (2008) 008 [arXiv:0801.2377] [SPIRES]. · doi:10.1088/1126-6708/2008/04/008
[22] J. Bagger and D.V. Belyaev, Supersymmetricbranes with(almost) arbitrary tensions, Phys. Rev.D 67 (2003) 025004 [hep-th/0206024] [SPIRES].
[23] I.G. Moss, Boundary terms for eleven-dimensional supergravity and M-theory, Phys. Lett.B 577 (2003) 71 [hep-th/0308159] [SPIRES]. · Zbl 1073.83529
[24] I.G. Moss, Boundary terms for supergravity and heterotic M-theory, Nucl. Phys.B 729 (2005) 179 [hep-th/0403106] [SPIRES]. · Zbl 1138.83376
[25] J.A. Bagger and D.V. Belyaev, Brane-localized Goldstone fermions in bulk supergravity, Phys. Rev.D 72 (2005) 065007 [hep-th/0406126] [SPIRES].
[26] A. Falkowski, On the one-loop Kähler potential in five-dimensional brane-world supergravity, JHEP05 (2005) 073 [hep-th/0502072] [SPIRES]. · doi:10.1088/1126-6708/2005/05/073
[27] D.V. Belyaev, Boundary conditions in supergravity on a manifold with boundary, JHEP01 (2006) 047 [hep-th/0509172] [SPIRES]. · doi:10.1088/1126-6708/2006/01/047
[28] T.G. Pugh, E. Sezgin and K.S. Stelle, D =7/D =6 Heterotic Supergravity with Gauged R-Symmetry,arXiv:1008.0726 [SPIRES]. · Zbl 1294.81230
[29] D.V. Belyaev, Bulk-brane supergravity,arXiv:0710.4540 [SPIRES].
[30] D.V. Belyaev and P. van Nieuwenhuizen, Tensor calculus for supergravity on a manifold with boundary, JHEP02 (2008) 047 [arXiv:0711.2272] [SPIRES]. · doi:10.1088/1126-6708/2008/02/047
[31] D.V. Belyaev, Supersymmetric bulk-brane coupling with odd gauge fields, JHEP08 (2006) 032 [hep-th/0605282] [SPIRES]. · doi:10.1088/1126-6708/2006/08/032
[32] R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc.49 (1943) 1. · Zbl 0063.00985 · doi:10.1090/S0002-9904-1943-07818-4
[33] N.H. Barth, The Fourth Order Gravitational Action For Manifolds With Boundaries, Class. Quant. Grav.2 (1985) 497 [SPIRES]. · Zbl 0575.53054 · doi:10.1088/0264-9381/2/4/015
[34] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim.B 44S10 (1966) 1 [Erratum-ibid.B 48 (1967) 463] [SPIRES]. · doi:10.1007/BF02710419
[35] S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys.B 87 (1975) 207 [SPIRES]. · doi:10.1016/0550-3213(75)90063-2
[36] S. Ferrara and P. van Nieuwenhuizen, Tensor Calculus for Supergravity, Phys. Lett.B 76 (1978) 404 [SPIRES].
[37] S. Ferrara and P. Van Nieuwenhuizen, Structure Of Supergravity, Phys. Lett.B 78 (1978) 573 [SPIRES].
[38] K.S. Stelle and P.C. West, Tensor Calculus For The Vector Multiplet Coupled To Supergravity, Phys. Lett.B 77 (1978) 376 [SPIRES].
[39] K.S. Stelle and P.C. West, Relation Between Vector And Scalar Multiplets And Gauge Invariance In Supergravity, Nucl. Phys.B 145 (1978) 175 [SPIRES]. · doi:10.1016/0550-3213(78)90420-0
[40] T. Uematsu, Structure Of N =1/2 Conformal And Poincare Supergravity In Two-Dimensions, Phys. Lett.B 183 (1987) 304 [SPIRES].
[41] D.S. Berman and D.C. Thompson, Membranes with a boundary, Nucl. Phys.B 820 (2009) 503 [arXiv:0904.0241] [SPIRES]. · Zbl 1194.81186 · doi:10.1016/j.nuclphysb.2009.06.004
[42] D. Grumiller and P. van Nieuwenhuizen, Holographic counterterms from local supersymmetry without boundary conditions, Phys. Lett.B 682 (2010) 462 [arXiv:0908.3486] [SPIRES].
[43] K. Shizuya, Superfield formulation of central charge anomalies in two-dimensional supersymmetric theories with solitons, Phys. Rev.D 69 (2004) 065021 [hep-th/0310198] [SPIRES].
[44] D.V. Belyaev and P. van Nieuwenhuizen, Simple D =4 supergravity with a boundary, JHEP09 (2008) 069 [arXiv:0806.4723] [SPIRES]. · Zbl 1245.83074 · doi:10.1088/1126-6708/2008/09/069
[45] T. Kugo and K. Ohashi, Superconformal tensor calculus on orbifold in 5D, Prog. Theor. Phys.108 (2002) 203 [hep-th/0203276] [SPIRES]. · Zbl 1027.81521 · doi:10.1143/PTP.108.203
[46] T. Kugo and S. Uehara, N =1 Superconformal Tensor Calculus: Multiplets With External Lorentz Indices And Spinor Derivative Operators, Prog. Theor. Phys.73 (1985) 235 [SPIRES]. · Zbl 0979.83532 · doi:10.1143/PTP.73.235
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.