×

Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells. (English) Zbl 1410.35143

Summary: Recent research has shown that motile cells can adapt their mode of propulsion to the mechanical properties of the environment in which they find themselves – crawling in some environments while swimming in others. The latter can involve movement by blebbing or other cyclic shape changes, and both highly-simplified and more realistic models of these modes have been studied previously. Herein we study swimming that is driven by membrane tension gradients that arise from flows in the actin cortex underlying the membrane, and does not involve imposed cyclic shape changes. Such gradients can lead to a number of different characteristic cell shapes, and our first objective is to understand how different distributions of membrane tension influence the shape of cells in an inviscid quiescent fluid. We then analyze the effects of spatial variation in other membrane properties, and how they interact with tension gradients to determine the shape. We also study the effect of fluid-cell interactions and show how tension leads to cell movement, how the balance between tension gradients and a variable bending modulus determine the shape and direction of movement, and how the efficiency of movement depends on the properties of the fluid and the distribution of tension and bending modulus in the membrane.

MSC:

35Q35 PDEs in connection with fluid mechanics
49Q10 Optimization of shapes other than minimal surfaces
49S05 Variational principles of physics
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
92C10 Biomechanics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
76B45 Capillarity (surface tension) for incompressible inviscid fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
65M38 Boundary element methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows

Software:

GitHub; BEMLIB; FELICITY

References:

[1] Arroyo M, Heltai L, Millán D, DeSimone A (2012) Reverse engineering the euglenoid movement. Proc Nat Acad Sci 109(44):17874-17879 · doi:10.1073/pnas.1213977109
[2] Barry NP, Bretscher MS (2010) Dictyostelium amoebae and neutrophils can swim. Proc Natl Acad Sci 107(25):11376-11380 · doi:10.1073/pnas.1006327107
[3] Bergert M, Chandradoss SD, Desai RA, Paluch E (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci 109(36):14434-14439 · doi:10.1073/pnas.1207968109
[4] Bergert M, Erzberger A, Desai RA, Aspalter IM, Oates AC, Charras G, Salbreux G, Paluch EK (2015) Force transmission during adhesion-independent migration. Nat Cell Biol 17:524 · doi:10.1038/ncb3134
[5] Binamé F, Pawlak G, Roux P, Hibner U (2010) What makes cells move: requirements and obstacles for spontaneous cell motility. Mol BioSyst 6(4):648-661 · doi:10.1039/b915591k
[6] Bonito A, Nochetto RH, Pauletti MS (2010) Parametric fem for geometric biomembranes. J Comput Phys 229(9):3171-3188 · Zbl 1307.76049 · doi:10.1016/j.jcp.2009.12.036
[7] Brailsford JD, Korpman RA, Bull BS (1980) Crenation and cupping of the red cell: a new theoretical approach. Part ii. Cupping. J Theor Biol 86(3):531-546 · doi:10.1016/0022-5193(80)90351-3
[8] Callan-Jones A, Ruprecht V, Wieser S, Heisenberg CP, Voituriez R (2016) Cortical flow-driven shapes of nonadherent cells. Phys Rev Lett 116(2):028102 · doi:10.1103/PhysRevLett.116.028102
[9] Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26(1):61-76 · doi:10.1016/S0022-5193(70)80032-7
[10] Capovilla R, Guven J, Santiago J (2003) Deformations of the geometry of lipid vesicles. J Phys A Math Gen 36(23):6281 · Zbl 1066.53125 · doi:10.1088/0305-4470/36/23/301
[11] Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9(9):730-736 · doi:10.1038/nrm2453
[12] Childress S (1981) Mechanics of swimming and flying, vol 2. Cambridge University Press, Cambridge · Zbl 0499.76118 · doi:10.1017/CBO9780511569593
[13] Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77(6):3363-3370 · doi:10.1016/S0006-3495(99)77168-7
[14] Dai J, Ting-Beall HP, Hochmuth RM, Sheetz MP, Titus MA (1999) Myosin I contributes to the generation of resting cortical tension. Biophys J 77(2):1168-1176 · doi:10.1016/S0006-3495(99)76968-7
[15] Diz-Muñoz A, Thurley K, Chintamen S, Altschuler SJ, Wu LF, Fletcher DA, Weiner OD (2016) Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. PLoS Biol 14(6):e1002474 · doi:10.1371/journal.pbio.1002474
[16] Diz-Muñoz A, Krieg M, Bergert M, Ibarlucea-Benitez I, Muller DJ, Paluch E, Heisenberg CP (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8(11):e1000544 · doi:10.1371/journal.pbio.1000544
[17] do Carmo MP (1976) Differential geometry of curves and surfaces. Prentice Hall, Upper Saddle River · Zbl 0326.53001
[18] Evans E, Needham D (1987) Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions. J Phys Chem 91(16):4219-4228 · doi:10.1021/j100300a003
[19] Farutin A, Biben T, Misbah C (2014) 3d numerical simulations of vesicle and inextensible capsule dynamics. J Comput Phys 275:539-568 · Zbl 1349.76416 · doi:10.1016/j.jcp.2014.07.008
[20] Finken R, Lamura A, Seifert U, Gompper G (2008) Two-dimensional fluctuating vesicles in linear shear flow. Eur Phys J E Soft Matter Biol Phys 25(3):309-321 · doi:10.1140/epje/i2007-10299-7
[21] Freund JB (2007) Leukocyte margination in a model microvessel. Phys Fluids 19(2):023301 · Zbl 1146.76385 · doi:10.1063/1.2472479
[22] Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992-1009 · doi:10.1016/j.cell.2011.11.016
[23] Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11-19 · doi:10.1083/jcb.200909003
[24] Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25(9):556-566 · doi:10.1016/j.tcb.2015.06.003
[25] Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11-12):693-703 · doi:10.1515/znc-1973-11-1209
[26] Henriksen JR, Ipsen JH (2004) Measurement of membrane elasticity by micro-pipette aspiration. Eur Phys J E Soft Matter Biol Phys 14(2):149-167 · doi:10.1140/epje/i2003-10146-y
[27] Hochmuth R, Shao J, Dai J, Scheetz M (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:358-369 · doi:10.1016/S0006-3495(96)79577-2
[28] Howe JD, Barry NP, Bretscher MS (2013) How do amoebae swim and crawl? PLoS ONE 8(9):e74382 · doi:10.1371/journal.pone.0074382
[29] Hung WC, Yang JR, Yankaskas CL, Wong BS, Wu PH, Pardo-Pastor C, Serra SA, Chiang MJ, Gu Z, Wirtz D et al (2016) Confinement sensing and signal optimization via piezo1/PKA and myosin II pathways. Cell Rep 15(7):1430-1441 · doi:10.1016/j.celrep.2016.04.035
[30] Joanny JF, Prost J (2009) Active gels as a description of the actin-myosin cytoskeleton. HFSP J 3(2):94-104 · doi:10.2976/1.3054712
[31] Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R, Hirsch K, Keller M, Förster R, Critchley DR, Fässler R et al (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191):51-55 · doi:10.1038/nature06887
[32] Lauga E, Davis AM (2012) Viscous marangoni propulsion. J Fluid Mech 705:120-133 · Zbl 1250.76209 · doi:10.1017/jfm.2011.484
[33] Lee J, Gustafsson M, Magnusson KE, Jacobson K (1990) The direction of membrane lipid flow in locomoting polymorphonuclear leukocytes. Science 247(4947):1229-1233 · doi:10.1126/science.2315695
[34] Li X, Peng Z, Lei H, Dao M, Karniadakis GE (2014) Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Phil Trans R Soc A 372(2021):20130389 · Zbl 1353.92037 · doi:10.1098/rsta.2013.0389
[35] Lieber AD, Schweitzer Y, Kozlov MM, Keren K (2015) Front-to-rear membrane tension gradient in rapidly moving cells. Biophys J 108(7):1599-1603 · doi:10.1016/j.bpj.2015.02.007
[36] Lipowsky R (2014) Coupling of bending and stretching deformations in vesicle membranes. Adv Colloid Interface Sci 208:14-24 · doi:10.1016/j.cis.2014.02.008
[37] Liu YJ, Berre ML, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuzé M, Takaki T, Voituriez R, Piel M (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160(4):659-672 · doi:10.1016/j.cell.2015.01.007
[38] Logue JS, Cartagena-Rivera AX, Baird MA, Davidson MW, Chadwick RS, Waterman CM (2015) Erk regulation of actin capping and bundling by eps8 promotes cortex tension and leader bleb-based migration. Elife 4:e08314 · doi:10.7554/eLife.08314
[39] Lorentzen A, Bamber J, Sadok A, Elson-Schwab I, Marshall CJ (2011) An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells. J Cell Sci 124(8):1256-1267 · doi:10.1242/jcs.074849
[40] Luo T, Mohan K, Iglesias PA, Robinson DN (2013) Molecular mechanisms of cellular mechanosensing. Nat Mater 12(11):1064-1071 · doi:10.1038/nmat3772
[41] Maiuri P, Rupprecht JF, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, Beco SD, Gov N, Heisenberg CP et al (2015) Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161(2):374-386 · doi:10.1016/j.cell.2015.01.056
[42] Nürnberg A, Kitzing T, Grosse R (2011) Nucleating actin for invasion. Nat Rev Cancer 11(3):177-187 · doi:10.1038/nrc3003
[43] Ou-Yang ZC, Helfrich W (1989) Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A 39(10):5280 · doi:10.1103/PhysRevA.39.5280
[44] Petrie RJ, Yamada KM (2016) Multiple mechanisms of 3D migration: the origins of plasticity. Curr opin cell biol 42:7-12 · doi:10.1016/j.ceb.2016.03.025
[45] Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29(1):545-76 · doi:10.1146/annurev.biophys.29.1.545
[46] Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge University Press, Cambridge · Zbl 0772.76005 · doi:10.1017/CBO9780511624124
[47] Pozrikidis C (2002) A practical guide to boundary element methods with the software library BEMLIB. CRC Press, Boca Raton · Zbl 1019.65097 · doi:10.1201/9781420035254
[48] Pozrikidis C (2003) Modeling and simulation of capsules and biological cells. CRC Press, Boca Raton · Zbl 1026.92002 · doi:10.1201/9780203503959
[49] Prost J, Jülicher F, Joanny J (2015) Active gel physics. Nat Phys 11(2):111-117 · doi:10.1038/nphys3224
[50] Rahimian A, Veerapaneni SK, Zorin D, Biros G (2015) Boundary integral method for the flow of vesicles with viscosity contrast in three dimensions. J Comput Phys 298:766-786 · Zbl 1349.76947 · doi:10.1016/j.jcp.2015.06.017
[51] Renkawitz J, Schumann K, Weber M, Lämmermann T, Pflicke H, Piel M, Polleux J, Spatz JP, Sixt M (2009) Adaptive force transmission in amoeboid cell migration. Nat Cell Biol 11(12):1438-1443 · doi:10.1038/ncb1992
[52] Renkawitz J, Sixt M (2010) Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep 11(10):744-750 · doi:10.1038/embor.2010.147
[53] Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch-Marte M, Sixt M, Voituriez R et al (2015) Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160(4):673-685 · doi:10.1016/j.cell.2015.01.008
[54] Salbreux G, Charras G, Paluch E (2012) Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 22(10):536-545 · doi:10.1016/j.tcb.2012.07.001
[55] Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135(3):510-523 · doi:10.1016/j.cell.2008.09.043
[56] Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13-137 · doi:10.1080/00018739700101488
[57] Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44:1182-1202 · doi:10.1103/PhysRevA.44.1182
[58] Thiébaud M, Misbah C (2013) Rheology of a vesicle suspension with finite concentration: a numerical study. Phys Rev E 88(6):062707 · doi:10.1103/PhysRevE.88.062707
[59] Traynor D, Kay RR (2007) Possible roles of the endocytic cycle in cell motility. J Cell Sci 120(Pt 14):2318 · doi:10.1242/jcs.007732
[60] Tu Z, Ou-Yang ZC (2004) A geometric theory on the elasticity of bio-membranes. J Phys A Math Gen 37(47):11407 · Zbl 1057.92029 · doi:10.1088/0305-4470/37/47/010
[61] van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res Rev Mut Res 728(1):23-34 · doi:10.1016/j.mrrev.2011.05.002
[62] Veerapaneni SK, Gueyffier D, Biros G, Zorin D (2009) A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows. J Comput Phys 228(19):7233-7249 · Zbl 1422.76144 · doi:10.1016/j.jcp.2009.06.020
[63] Veerapaneni SK, Rahimian A, Biros G, Zorin D (2011) A fast algorithm for simulating vesicle flows in three dimensions. J Comput Phys 230(14):5610-5634 · Zbl 1419.76475 · doi:10.1016/j.jcp.2011.03.045
[64] Walker SW (2017) FELICITY Wiki documentation. https://github.com/walkersw/felicity-finite-element-toolbox/wiki
[65] Wang Q, Othmer HG (2015a) Computational analysis of amoeboid swimming at low reynolds number. J Math Biol 72:1893-1926 · Zbl 1341.92011 · doi:10.1007/s00285-015-0925-9
[66] Wang Q, Othmer HG (2015b) The performance of discrete models of low reynolds number swimmers. Math Biosci Eng 12(6):1303-1320 · Zbl 1326.92006 · doi:10.3934/mbe.2015.12.1303
[67] Wang Q, Othmer HG (2016) Analysis of a model microswimmer with applications to blebbing cells and mini-robots. arXiv preprint arXiv:1610.02090 · Zbl 1390.92026
[68] Welch MD (2015) Cell migration, freshly squeezed. Cell 160(4):581-582 · doi:10.1016/j.cell.2015.01.053
[69] Winklbauer R (2015) Cell adhesion strength from cortical tension-an integration of concepts. J Cell Sci 128(20):3687-3693 · doi:10.1242/jcs.174623
[70] Wu H, Farutin A, Hu WF, Thiébaud M, Rafaï S, Peyla P, Lai MC, Misbah C (2016) Amoeboid swimming in a channel. Soft Matter 12(36):7470-7484 · doi:10.1039/C6SM00934D
[71] Wu H, Shiba H, Noguchi H (2013) Mechanical properties and microdomain separation of fluid membranes with anchored polymers. Soft Matter 9(41):9907-9917 · doi:10.1039/c3sm51680f
[72] Wu H, Thiébaud M, Hu WF, Farutin A, Rafaï S, Lai MC, Peyla P, Misbah C (2015) Amoeboid motion in confined geometry. Phys Rev E 92(5):050701 · doi:10.1103/PhysRevE.92.050701
[73] Wu H, Tu Z (2009) Theoretical and numerical investigations on shapes of planar lipid monolayer domains. J Chem Phys 130(4):045103 · doi:10.1063/1.3063119
[74] Yumura S, Itoh G, Kikuta Y, Kikuchi T, Kitanishi-Yumura T, Tsujioka M (2012) Cell-scale dynamic recycling and cortical flow of the actin-myosin cytoskeleton for rapid cell migration. Biology Open 2(2):200-209 · doi:10.1242/bio.20122899
[75] Zatulovskiy E, Tyson R, Bretschneider T, Kay RR (2014) Bleb-driven chemotaxis of Dictyostelium cells. J Cell Biol 204(6):1027-1044 · doi:10.1083/jcb.201306147
[76] Zhao H, Isfahani AH, Olson LN, Freund JB (2010) A spectral boundary integral method for flowing blood cells. J Comput Phys 229(10):3726-3744 · Zbl 1186.92013 · doi:10.1016/j.jcp.2010.01.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.