×

The performance of discrete models of low Reynolds number swimmers. (English) Zbl 1326.92006

Summary: Swimming by shape changes at low Reynolds number is widely used in biology and understanding how the performance of movement depends on the geometric pattern of shape changes is important to understand swimming of microorganisms and in designing low Reynolds number swimming models. The simplest models of shape changes are those that comprise a series of linked spheres that can change their separation and/or their size. Herein we compare the performance of three models in which these modes are used in different ways.

MSC:

92C05 Biophysics
92C50 Medical applications (general)

References:

[1] G. Alexander, Hydrodynamics of linked sphere model swimmers,, Journal of Physics: Condensed Matter, 21 (2009)
[2] F. Alouges, Optimal strokes for low reynolds number swimmers: An example,, Journal of Nonlinear Science, 18, 277 (2008) · Zbl 1146.76062 · doi:10.1007/s00332-007-9013-7
[3] F. Alouges, Optimal strokes for axisymmetric microswimmers,, The European Physical Journal E: Soft Matter and Biological Physics, 28, 279 (2009) · doi:10.1140/epje/i2008-10406-4
[4] F. Alouges, Numerical strategies for stroke optimization of axisymmetric microswimmers,, Mathematical Models and Methods in Applied Sciences, 21, 361 (2011) · Zbl 1315.65100 · doi:10.1142/S0218202511005088
[5] J. E. Avron, Optimal swimming at low reynolds numbers,, Phys. Rev. Lett, 93 (2004) · doi:10.1103/PhysRevLett.93.186001
[6] J. Avron, Pushmepullyou: An efficient micro-swimmer,, New Journal of Physics, 7 (2005) · doi:10.1088/1367-2630/7/1/234
[7] J. Avron, A geometric theory of swimming: Purcell’s swimmer and its symmetrized cousin,, New Journal of Physics, 10 (2008) · doi:10.1088/1367-2630/10/6/063016
[8] C. Barentin, An iterative method to calculate forces exerted by single cells and multicellular assemblies from the detection of deformations of flexible substrates,, Eur Biophys J, 35, 328 (2006) · doi:10.1007/s00249-005-0038-2
[9] N. P. Barry, Dictyostelium amoebae and neutrophils can swim,, PNAS, 107 (2010) · doi:10.1073/pnas.1006327107
[10] G. K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction,, J. Fluid Mech., 74, 1 (1976) · Zbl 0346.76073 · doi:10.1017/S0022112076001663
[11] G. Batchelor, Slender-body theory for particles of arbitrary cross-section in stokes flow,, Journal of Fluid Mechanics, 44, 419 (1970) · Zbl 0216.52401 · doi:10.1017/S002211207000191X
[12] L. Becker, On self-propulsion of micro-machines at low reynolds number: Purcell’s three-link swimmer,, Journal of fluid mechanics, 490, 15 (2003) · Zbl 1063.76690 · doi:10.1017/S0022112003005184
[13] F. Binamé, What makes cells move: Requirements and obstacles for spontaneous cell motility,, Molecular BioSystems, 6, 648 (2010)
[14] J. P. Butler, Traction fields, moments, and strain energy that cells exert on their surroundings,, Am J Physiol Cell Physiol, 282 (2001) · doi:10.1152/ajpcell.00270.2001
[15] G. T. Charras, Blebs lead the way: How to migrate without lamellipodia,, Nat Rev Mol Cell Biol, 9, 730 (2008) · doi:10.1038/nrm2453
[16] R. Cox, The motion of long slender bodies in a viscous fluid part 1. General theory,, Journal of Fluid mechanics, 44, 791 (1970) · Zbl 0267.76015 · doi:10.1017/S002211207000215X
[17] O. Fackler, Cell motility through plasma membrane blebbing,, The Journal of Cell Biology, 181, 879 (2008) · doi:10.1083/jcb.200802081
[18] R. Golestanian, Analytic results for the three-sphere swimmer at low reynolds number,, <a href= · doi:10.1103/PhysRevE.77.036308
[19] G. Hancock, The self-propulsion of microscopic organisms through liquids,, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 217, 96 (1953) · Zbl 0050.19302 · doi:10.1098/rspa.1953.0048
[20] R. Johnson, An improved slender-body theory for stokes flow,, Journal of Fluid Mechanics, 99, 411 (1980) · Zbl 0447.76037 · doi:10.1017/S0022112080000687
[21] R. Johnson, Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory,, Biophysical journal, 25, 113 (1979) · doi:10.1016/S0006-3495(79)85281-9
[22] J. Keller, Slender-body theory for slow viscous flow,, J. Fluid Mech, 75, 705 (1976) · Zbl 0377.76036 · doi:10.1017/S0022112076000475
[23] S. Kim, <em>Microhydrodynamics: Principles and Selected Applications</em>, vol. 507,, Butterworth-Heinemann Boston (1991)
[24] T. Lämmermann, Rapid leukocyte migration by integrin-independent flowing and squeezing,, Nature, 453, 51 (2008)
[25] E. Lauga, The hydrodynamics of swimming microorganisms,, Repts. on Prog. in Phys., 72 (2009) · doi:10.1088/0034-4885/72/9/096601
[26] J. Lighthill, Flagellar hydrodynamics: The john von neumann lecture,, SIAM Review, 161 (1975) · Zbl 0366.76099 · doi:10.1137/1018040
[27] M. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers,, Communications on Pure and Applied Mathematics, 5, 109 (1952) · Zbl 0046.41908 · doi:10.1002/cpa.3160050201
[28] S. Michelin, Efficiency optimization and symmetry-breaking in a model of ciliary locomotion,, Physics of Fluids (1994-present), 22 (2010) · doi:10.1063/1.3507951
[29] A. Najafi, A simplest swimmer at low reynolds number: Three linked spheres,, <a href=
[30] N. Osterman, Finding the ciliary beating pattern with optimal efficiency,, Proceedings of the National Academy of Sciences, 108, 15727 (2011) · doi:10.1073/pnas.1107889108
[31] E. Paluch, Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments,, Biophysical journal, 89, 724 (2005) · doi:10.1529/biophysj.105.060590
[32] C. Pozrikidis, <em>Boundary Integral and Singularity Methods for Linearized Viscous Flow</em>,, Cambridge Univ Pr (1992) · Zbl 0772.76005 · doi:10.1017/CBO9780511624124
[33] E. Purcell, Life at low Reynolds number,, Amer. J. Physics, 45, 3 (1977) · doi:10.1063/1.30370
[34] E. Purcell, Life at low reynolds number,, Am. J. Phys, 45, 3 (1977) · doi:10.1063/1.30370
[35] J. Renkawitz, Mechanisms of force generation and force transmission during interstitial leukocyte migration,, EMBO reports, 11, 744 (2010) · doi:10.1038/embor.2010.147
[36] A. Shapere, Geometry of self-propulsion at low Reynolds number,, J. Fluid Mech., 198, 557 (1989) · Zbl 0674.76114 · doi:10.1017/S002211208900025X
[37] D. Tam, Optimal stroke patterns for purcell’s three-link swimmer,, Physical Review Letters, 98 (2007) · doi:10.1103/PhysRevLett.98.068105
[38] P. J. M. Van Haastert, Amoeboid cells use protrusions for walking, gliding and swimming,, PloS one, 6 (2011)
[39] Q. Wang, <em>Modeling of Amoeboid Swimming at Low Reynolds Number</em>,, PhD thesis (2012)
[40] Q. Wang, <em>Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding</em>, chapter Models of low Reynolds number swimmers inspired by cell blebbing, 197-206,, Frontiers in Applications of Mathematics (2012)
[41] K. Yoshida, Dissection of amoeboid movement into two mechanically distinct modes,, J. Cell Sci., 119, 3833 (2006) · doi:10.1242/jcs.03152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.