×

Parametric FEM for geometric biomembranes. (English) Zbl 1307.76049

Summary: We consider geometric biomembranes governed by an \(L^{2}\)-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76Z05 Physiological flows
92C15 Developmental biology, pattern formation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

ALBERTA
Full Text: DOI

References:

[1] Canham, P., The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol., 26, 1, 61-81 (1970)
[2] Helfrich, W., Elastic properties of lipid bilayers – theory and possible experiments, Zeitschrift Fur Naturforschung C - A Journal Of Biosciences, 28, 693 (1973)
[3] Jenkins, J., The equations of mechanical equilibrium of a model membrane, SIAM J. Appl. Math., 32, 4, 755-764 (1977) · Zbl 0358.73074
[4] Steigmann, D., Fluid films with curvature elasticity, Arch. Ration. Mech. Anal., 150, 2, 127-152 (1999) · Zbl 0982.76012
[5] Hu, D.; Zhang, P.; E, W., Continuum theory of a moving membrane, Phys. Rev. E, 375, 4, 041605-041611 (2007)
[6] S. Montiel, A. Ros, Curves and surfaces, Graduate Studies in Mathematics, vol. 69. American Mathematical Society, Providence, RI, 2005 (Translated and updated from the 1998 Spanish edition by the authors).; S. Montiel, A. Ros, Curves and surfaces, Graduate Studies in Mathematics, vol. 69. American Mathematical Society, Providence, RI, 2005 (Translated and updated from the 1998 Spanish edition by the authors). · Zbl 1075.53001
[7] Willmore, T. J., Riemannian Geometry (1993), Oxford Science Publications, The Clarendon Press Oxford University Press: Oxford Science Publications, The Clarendon Press Oxford University Press New York · Zbl 0797.53002
[8] E.A. Evans, R. Skalak, Mechanics and thermodynamics of biomembranes. 2. CRC Crit. Rev. Bioeng. 3 (4) (1979) 331-418.; E.A. Evans, R. Skalak, Mechanics and thermodynamics of biomembranes. 2. CRC Crit. Rev. Bioeng. 3 (4) (1979) 331-418.
[9] Seifert, U., Configurations of fluid membranes and vesicles, Adv. Phys., 46, 1, 13-137 (1997)
[10] Steigmann, D.; Baesu, E.; Rudd, R.; Belak, J.; McElfresh, M., On the variational theory of cell-membrane equilibria, Interfaces Free Bound., 5, 4, 357-366 (2003) · Zbl 1057.35077
[11] A. Bonito, R. Nochetto, M. Pauletti, Dynamics of biomembranes: effect of the bulk fluid, in preparation.; A. Bonito, R. Nochetto, M. Pauletti, Dynamics of biomembranes: effect of the bulk fluid, in preparation. · Zbl 1231.92014
[12] Sokołowski, J.; Zolésio, J.-P., Introduction to shape optimization, Springer Series in Computational Mathematics, vol. 16 (1992), Springer-Verlag: Springer-Verlag Berlin, (Shape sensitivity analysis) · Zbl 0765.76070
[13] Dogˇan, G.; Morin, P.; Nochetto, R.; Verani, M., Discrete gradient flows for shape optimization and applications, Comput. Methods Appl. Mech. Eng., 196, 37-40, 3898-3914 (2007) · Zbl 1173.49307
[14] Dziuk, G., Computational parametric Willmore flow, Numer. Math., 111, 1, 55-80 (2008) · Zbl 1158.65073
[15] Rusu, R. E., An algorithm for the elastic flow of surfaces, Interfaces Free Bound., 7, 3, 229-239 (2005) · Zbl 1210.35149
[16] J. Barrett, H. Garcke, R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations, preprint.; J. Barrett, H. Garcke, R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations, preprint. · Zbl 1186.65133
[17] Bänsch, E.; Morin, P.; Nochetto, R., A finite element method for surface diffusion: the parametric case, J. Comput. Phys., 203, 1, 321-343 (2005) · Zbl 1070.65093
[18] A. Bonito, R. Nochetto, M. Pauletti, Geometrically consistent mesh modification, submitted for publication.; A. Bonito, R. Nochetto, M. Pauletti, Geometrically consistent mesh modification, submitted for publication. · Zbl 1220.65169
[19] Du, Q.; Liu, C.; Wang, X., A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comput. Phys., 198, 2, 450-468 (2004) · Zbl 1116.74384
[20] Du, Q.; Liu, C.; Wang, X., Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., 212, 2, 757-777 (2006) · Zbl 1086.74024
[21] Esedoglu, S.; Ruuth, S.; Tsai, R., Threshold dynamics for high order geometric motions, Interfaces Free Bound., 10, 3, 263-282 (2008) · Zbl 1157.65330
[22] Droske, M.; Rumpf, M., A level set formulation for Willmore flow, Interfaces Free Bound., 6, 3, 361-378 (2004) · Zbl 1062.35028
[23] Delfour, M. C.; Zolésio, J.-P., Shapes and geometries, Advances in Design and Control, vol. 4 (2001), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, (Analysis, differential calculus, and optimization) · Zbl 1002.49029
[24] Deckelnick, K.; Dziuk, G., Error analysis of a finite element method for the Willmore flow of graphs, Interfaces Free Bound., 8, 1, 21-46 (2006) · Zbl 1102.35047
[25] Deckelnick, K.; Dziuk, G.; Elliott, C., Computation of geometric partial differential equations and mean curvature flow, Acta Numer., 14, 139-232 (2005) · Zbl 1113.65097
[26] Dziuk, G., An algorithm for evolutionary surfaces, Numer. Math., 58, 6, 603-611 (1991) · Zbl 0714.65092
[27] Gilbarg, D.; Trudinger, N., Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224 (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0562.35001
[28] Gurtin, M., An introduction to continuum mechanics, Mathematics in Science and Engineering, vol. 158 (1981), Academic Press Inc. [Harcourt Brace Jovanovich Publishers]: Academic Press Inc. [Harcourt Brace Jovanovich Publishers] New York · Zbl 0559.73001
[29] M. Giaquinta, S. Hildebrandt, Calculus of variations. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 310, Springer-Verlag, Berlin, 1996 (The Lagrangian formalism).; M. Giaquinta, S. Hildebrandt, Calculus of variations. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 310, Springer-Verlag, Berlin, 1996 (The Lagrangian formalism). · Zbl 0853.49001
[30] Bänsch, E., Finite element discretization of the Navier-Stokes equations with a free capillary surface, Numer. Math., 88, 2, 203-235 (2001) · Zbl 0985.35060
[31] Clarenz, U.; Diewald, U.; Dziuk, G.; Rumpf, M.; Rusu, R., A finite element method for surface restoration with smooth boundary conditions, Comput. Aided Geom. Des., 21, 5, 427-445 (2004) · Zbl 1069.65546
[32] C. Heine, Isoparametric finite element approximations of curvature on hypersurfaces, preprint from his webpage.; C. Heine, Isoparametric finite element approximations of curvature on hypersurfaces, preprint from his webpage.
[33] Lakkis, O.; Nochetto, R., A posteriori error analysis for the mean curvature flow of graphs, SIAM J. Numer. Anal., 42, 5, 1875-1898 (2005), (electronic) · Zbl 1085.65088
[34] Demlow, A., Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal., 47, 2, 805-827 (2009) · Zbl 1195.65168
[35] M. Pauletti, Parametric AFEM for Geometric Evolution Equations and Coupled Fluid-Membrane Interaction, Ph.D. Thesis, University of Maryland, 2008
[36] Demlow, A.; Dziuk, G., An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal., 45, 1, 421-442 (2007), (electronic) · Zbl 1160.65058
[37] K. Mekchay, Convergence of Adaptive Finite Element Methods, Ph.D. Thesis, University of Maryland, 2005.; K. Mekchay, Convergence of Adaptive Finite Element Methods, Ph.D. Thesis, University of Maryland, 2005. · Zbl 1104.65103
[38] K. Mekchay, P. Morin, R. Nochetto, AFEM for the Laplace-Beltrami operator on graphs: design and conditional contraction property, submitted for publication.; K. Mekchay, P. Morin, R. Nochetto, AFEM for the Laplace-Beltrami operator on graphs: design and conditional contraction property, submitted for publication. · Zbl 1215.65177
[39] Kossaczký, I., A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math., 55, 3, 275-288 (1994) · Zbl 0823.65119
[40] A. Schmidt, K. Siebert, Design of adaptive finite element software, Lecture Notes in Computational Science and Engineering, vol. 42, Springer-Verlag, Berlin, 2005 (The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux)).; A. Schmidt, K. Siebert, Design of adaptive finite element software, Lecture Notes in Computational Science and Engineering, vol. 42, Springer-Verlag, Berlin, 2005 (The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux)). · Zbl 1068.65138
[41] Köster, D.; Kriessl, O.; Siebert, K., Design of finite element tools for coupled surface and volume meshes, Numer. Math. Theor. Methods Appl., 1, 3, 245-274 (2008) · Zbl 1174.65539
[42] Jenkins, J., Static equilibrium configurations of a model red blood cell, J. Math. Biol., 4, 2, 150-169 (1977) · Zbl 0356.92010
[43] Seifert, U.; Berndl, K.; Lipowsky, R., Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models, Phys. Rev. A, 44, 2, 1182-1202 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.