×

Weyl sums, mean value estimates, and Waring’s problem with friable numbers. (English) Zbl 1385.11052

Waring’s problem is the question of whether or not, given a positive integer \(k\), there exists positive integers \(s\) and \(N_0\) such that every integer \(N > N_0\) can be written as a sum of \(s\) \(k\)th powers: \[ N = n_1^{k} + \cdots + n_s^{k}. \] Denote by \(G(k)\) the least such number \(s\). T. D. Wooley [J. Lond. Math. Soc., II. Ser. 51, No. 1, 1–13 (1995; Zbl 0833.11041)] proves that \[ G(k) \leq k(\log{k} + \log\log{k} + 2 + O(\log\log{k}/\log{k})). \] To obtain an asymptotic formula for the number of solutions to the above mentioned equation, we need more variables than the bound given in the above inequality. The current best result follows from the T. D. Wooley’s work [Proc. Lond. Math. Soc. (3) 111, No. 3, 519–560 (2015; Zbl 1328.11087)], which gives such an asymptotic formula when \(s \geq Ck^2 + O(k)\) for \(c=1.542749\ldots\). Recently, J. Bourgain et al. [Ann. Math. (2) 184, No. 2, 633–682 (2016; Zbl 1408.11083)] proved the Vinogradov’s main conjecture, which allows \(C=1.\) The authors, using Friable integers concept, obtain an asymptotic formula for Weyl sums in major arcs, non-trivial upper bounds for them in minor arcs, and moreover a mean value estimate for friable Weyl sums with exponent essentially the same as in the classical case. As an application, they study Waring’s problem with friable numbers, with the number of summands essentially the same as in the classical case.

MSC:

11L07 Estimates on exponential sums
11P05 Waring’s problem and variants
11N25 Distribution of integers with specified multiplicative constraints

References:

[1] [1]A. Balog and A. S’ark”ozy, On sums of sequences of integers. I, Acta Arith. 44 (1984), 73–86.
[2] [2]V. Blomer, J. Br”udern, and R. Dietmann, Sums of smooth squares, Compos. Math. 145 (2009), 1401–1441. · Zbl 1220.11125
[3] [3]J. Bourgain, On {\(\Lambda\)}(p)-subsets of squares, Israel J. Math. 67 (1989), 291–311. · Zbl 0692.43005
[4] [4]J. Bourgain, C. Demeter, and L. Guth, Proof of the main conjecture in Vinogradov’s Mean Value Theorem for degrees higher than three, Ann. of Math. (2) 184 (2016), 633–682. · Zbl 1408.11083
[5] [5]R. de la Bret‘eche, Sommes d’exponentielles et entiers sans grand facteur premier, Proc. London Math. Soc. (3) 77 (1998), 39–78. · Zbl 0893.11039
[6] [6]R. de la Bret‘eche, Sommes sans grand facteur premier, Acta Arith. 88 (1999), 1–14. · Zbl 0935.11031
[7] [7]R. de la Bret‘eche et A. Granville, Densit’e des friables, Bull. Soc. Math. France 142 (2014), 303–348. · Zbl 1318.11121
[8] [8]R. de la Bret‘eche et G. Tenenbaum, Propri’et’es statistiques des entiers friables, Ramanujan J. 9 (2005), 139–202. · Zbl 1152.11040
[9] [9]J. Br”udern and T. D. Wooley, On Waring’s problem for cubes and smooth Weyl sums, Proc. London Math. Soc. (3) 82 (2001), 89–109. · Zbl 1016.11044
[10] [10]N. G. de Bruijn, On the number of positive integers x and free of prime factors > y, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50–60. · Zbl 0042.04204
[11] [11]S. Drappeau, Sommes friables d’exponentielles et applications, Canad. J. Math. 67 (2015), 597–638. · Zbl 1388.11068
[12] [12]E. Fouvry et G. Tenenbaum, Entiers sans grand facteur premier en progressions’ arithmetiques, Proc. London Math. Soc. (3) 63 (1991), 449–494. · Zbl 0745.11042
[13] [13]A. Granville, Smooth numbers: computational number theory and beyond, in: Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, Math. Sci. Res. Inst. Publ. 44, Cambridge Univ. Press, Cambridge, 2008, 267–323. · Zbl 1230.11157
[14] [14]B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), 465–540. · Zbl 1251.37012
[15] [15]G. Harcos, Waring’s problem with small prime factors, Acta Arith. 80 (1997), 165– 185. · Zbl 0871.11066
[16] [16]G. Harman, Trigonometric sums over primes. I, Mathematika 28 (1981), 249–254. · Zbl 0465.10029
[17] [17]A. J. Harper, Bombieri–Vinogradov and Barban–Davenport–Halberstam type theorems for smooth numbers, arXiv:1208.5992 (2012).
[18] [18]A. J. Harper, Minor arcs, mean values, and restriction theory for exponential sums over smooth numbers, Compos. Math. 152 (2016), 1121–1158. · Zbl 1362.11077
[19] [19]D. Hilbert, Beweis f”ur die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl nterPotenzen (Waringsches Problem), Math. Ann. 67 (1909), 281–300. · JFM 40.0236.03
[20] [20]A. Hildebrand, On the number of positive integers x and free of prime factors > y, J. Number Theory 22 (1986), 289–307. · Zbl 0575.10038
[21] [21]A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296 (1986), 265–290. · Zbl 0601.10028
[22] [22]A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Th’eor. Nombres Bordeaux 5 (1993), 411–484. · Zbl 0797.11070
[23] [23]H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, Amer. Math. Soc., Providence, RI, 2004. · Zbl 1059.11001
[24] [24]K. Kawada, On sums of seven cubes of almost primes, Acta Arith. 117 (2005), 213–245. Waring’s problem with friable numbers299 · Zbl 1068.11065
[25] [25]A. V. Kumchev, On Weyl sums over primes and almost primes, Michigan Math. J. 54 (2006), 243–268. · Zbl 1137.11054
[26] [26]J. C. Lagarias and K. Soundararajan, Counting smooth solutions to the equation A + B = C, Proc. London Math. Soc. (3) 104 (2012), 770–798. · Zbl 1270.11031
[27] [27]H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Reg. Conf. Ser. Math. 84, Amer. Math. Soc., Providence, RI, 1994.
[28] [28]P. Moree, Integers without large prime factors: from Ramanujan to de Bruijn, Integers 14A (2014), paper no. A5, 13 pp. · Zbl 1335.11076
[29] [29]E. Saias, Sur le nombre des entiers sans grand facteur premier, J. Number Theory’ 32 (1989), 78–99. · Zbl 0676.10028
[30] [30]G. Tenenbaum, Introduction ‘a la th’eorie analytique et probabiliste des nombres, 3rd ed., ’Echelles, Belin, 2008.
[31] [31]R. C. Vaughan, A new iterative method in Waring’s problem, Acta Math. 162 (1989), 1–71. · Zbl 0665.10033
[32] [32]R. C. Vaughan, The Hardy–Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0868.11046
[33] [33]R. C. Vaughan and T. D. Wooley, Waring’s problem: a survey, in: Number Theory for the Millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 301–340. · Zbl 1044.11090
[34] [34]E. Waring, Meditationes Algebraicæ, Amer. Math. Soc., Providence, RI, 1991.
[35] [35]T. D. Wooley, Large improvements in Waring’s problem, Ann. of Math. (2) 135 (1992), 131–164. · Zbl 0754.11026
[36] [36]T. D. Wooley, Breaking classical convexity in Waring’s problem: sums of cubes and quasi-diagonal behaviour, Invent. Math. 122 (1995), 421–451. · Zbl 0851.11055
[37] [37]T. D. Wooley, New estimates for smooth Weyl sums, J. London Math. Soc. (2) 51 (1995), 1–13. · Zbl 0833.11041
[38] [38]T. D. Wooley, On exponential sums over smooth numbers, J. Reine Angew. Math. 488 (1997), 79–140. · Zbl 0880.11060
[39] [39]T. D. Wooley, Multigrade efficient congruencing and Vinogradov’s mean value theorem, Proc. London Math. Soc. (3) 111 (2015), 519–560. · Zbl 1328.11087
[40] [40]T. D. Wooley, Sums of three cubes, II, Acta Arith. 170 (2015), 73–100. · Zbl 1408.11094
[41] [41]T. D. Wooley, The cubic case of the main conjecture in Vinogradov’s mean value theorem, Adv. Math. 294 (2016), 532–561. · Zbl 1365.11097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.